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1 Biospecimens 

To the section on biospecimens was contributed by: Troy Shelton, Jay Bowen, David 

Mallery, Tara Lichtenberg, Kristen Leraas, Scott Morris, Christopher R. Pierson, Joseph 

Paulauskis, Erin Curley, Mark Sherman, Kevin Lau, Robert Penny.  

Correspondence and questions should be directed to:  Troy Shelton (tshelton@intgen.org) 

To the section on clinical data was contributed by: Laila Poisson, Jill Barnholtz-Sloan, Jay 

Bowen, Johanna Gardner, Caterina Giannini, Haley Gittleman, Mia Griffod, Tara Lichtenberg, 

Brian P. O’Neill, Sofie Salama, Lisa Scarpace, Candace Shelton, Yun Wang, Peggy Yena. 

Correspondence and questions should be directed to:  Laila Poisson 

(laila.poisson@hfhs.org) 

a) Biospecimen acquisition and quality control 

Biospecimens were collected from patients diagnosed with diffuse glioma (grade II or III) 

undergoing surgical resection and had received no prior treatment for their disease 

(chemotherapy or radiotherapy). The pathologic diagnosis of astrocytoma, oligodendroglioma, 

oligoastrocytoma of grade II or III was established by the neuropathologist at the tissue source 

site.  Institutional review boards at each tissue source site reviewed protocols and consent 

documentation and approved submission of cases to TCGA. Each frozen primary tumor 

specimen had a companion blood/blood components specimen (including DNA extracted at the 

tissue source site). Tumor samples were required to be 200 mg. Recurrent tumor specimens for 

9 of the cases in the final data freeze list were submitted for molecular characterization. Two of 

these cases had two separate recurrences analyzed. Specimens were shipped overnight from 

27 tissue source site using a cryoport that maintained an average temperature of less than -

180°C. Each tumor was embedded in optimal cutting temperature (OCT) medium and a 

histologic section was obtained for review. Each H&E stained case was reviewed by a board-

certified TCGA neuropathologist for quality assurance and to confirm that the tumor specimen 

was histologically consistent with diffuse glioma (astrocytoma, oligoastrocytoma or 

oligodendroglioma of WHO grade II or III). The tumor sections were required to contain an 

average of 60% tumor cell nuclei with less than 50% necrosis for inclusion in the study per 

TCGA protocol requirements. 

The case list freeze included 293 cases in batches 78, 112, 146, 163, 189, 219, 245, 282, 292, 

295, and 306. Samples were from the following 13 tissue source sites: Thomas Jefferson 
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University (CS); Mayo Clinic (DB); University of Florida (DH); Henry Ford Hospital (DU); Duke 

University (E1); University of North Carolina (EZ); Case Western (FG); International Genomics 

Consortium (FN); St. Joseph AZ (HT); Memorial Sloan Kettering Cancer Center (HW); 

Christiana Care Health Services, Inc. (IK); Cureline, Inc. (P5); Fondazione-Besta (QH). 

b) Sample processing 

RNA and DNA were extracted from tumor specimens using a modification of the DNA/RNA 

AllPrep kit (Qiagen). Flow-through from the Qiagen DNA column was processed using a 

mirVana miRNA Isolation Kit (Ambion). This latter step generated RNA preparations that 

included RNA <200 nt suitable for miRNA analysis. DNA was extracted from blood using the 

QiaAmp blood midi kit (Qiagen). 

Each specimen was quantified by measuring Abs260 with a UV spectrophotometer or by 

PicoGreen assay. DNA specimens were resolved by 1% agarose gel electrophoresis to confirm 

high molecular weight fragments. A custom Sequenom SNP panel or the AmpFISTR Identifiler 

(Applied Biosystems) was utilized to verify tumor DNA and germline DNA were derived from the 

same patient. Five hundred nanograms of each tumor and normal DNA were sent to Qiagen for 

REPLI-g whole genome amplification using a 100 µg reaction scale. Only specimens yielding a 

minimum of 6.9 µg of tumor DNA, 5.15 µg RNA, and 4.9 µg of germline DNA were included in 

this study. RNA was analyzed via the RNA6000 nano assay (Agilent) for determination of an 

RNA Integrity Number (RIN), and only the cases with RIN ≥ 7.0 were included in this study. 

Overall, the BCR received 827 lower-grade glioma cases of which 572 (69%) passed quality 

control.  

c) Clinical files and analysis 

LGG clinical files were downloaded from the TCGA Data portal (https://tcga-

data.nci.nih.gov/tcga/dataAccessMatrix.htm, August 25, 2014). All available XML files for 

records through batch 306 were included in the download according the specifications of the 

data freeze (Batches 78, 112, 146, 163, 189, 219, 245, 282, 292, 295, 306). The case-level 

XML files were converted to rectangular files, cleaned, and integrated using SAS v9.2. 

Supplemental radiotherapy and pharmacotherapy receipt biotab files were queried to update 

missing information regarding primary therapy receipt, i.e., therapy received as part of the initial 

treatment of disease. We classify primary therapy as treatment having started within 90 days of 

diagnosis and prior to the first reported tumor event. Cases with supplemental therapy data 

reported, but without treatments meeting the primary therapy criteria, are listed as not receiving 
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primary therapy. The working data file was cross-referenced against the list of samples 

contained in the data freeze. This file with variable key can be found in the supplemental 

materials (Table S1). For cases without available clinical records, the histology type was 

obtained from the biospecimen XML files.  

Overall survival is defined as the years from initial diagnosis until death. Cases still alive at the 

time of this study have overall survival time censored at the time of last follow-up. Progression-

free survival is defined as the years from initial diagnosis until either the time of the first new 

tumor event (progression or recurrence) or death. Persons who were alive and without 

progression or recurrence at the time of the study had progression-free survival time censored 

at the time of last follow-up. For analysis including GBM, data were obtained from the recent 

TCGA publication (Brennan et al., 2013).Only primary GBM samples were included.  

Survival curves were estimated and plotted using the Kaplan-Meier method. Log-rank tests 

were used to compare curves between groups. Single-predictor and multiple-predictor models 

were fit using Cox regression under the proportional hazards assumption. Hazard ratios and 

95% confidence intervals are reported. Area under the receiver operator characteristic curve 

(AUC) is estimated for prediction of the survival outcomes accounting for observations censored 

due to loss to follow-up. Prediction error curves provide estimates of error across time based on 

the Brier score, which compares the predicted probability of the event to the observed event 

status. The marginal model was used for censoring probability and bootstrap resampling (0.632 

weight) was used to enhance generalizability of the error estimates. A Brier score of 0 is perfect 

prediction and 0.33 is equivalent to random prediction. The reference curve is based on a model 

with no covariates. These analyses were conducted in R (v 3.02) using survival and risksetROC 

(Heagerty and Zheng, 2005) and pec (Mogensen et al., 2012) packages.   

Clinical Data: Summary of Results. There are 289 cases (98.6%) with clinical data in the data 

freeze (Table S1). Three cases with clinical data were excluded from the freeze because they 

were found to be recurrent (TCGA-CS-6670, TCGA-DU-7011) or not in accordance with the 

TCGA protocol (TCGA-DB-5270). Survival by grade and histology was consistent with prior 

studies (Figure S22A-E). IDH-1p19q codel status is known for 282 cases.  IDHwt tumors have 

no mutation in either IDH1 or IDH2. Tumors with a mutation in either IDH1 or IDH2 are further 

subdivided by whether there is co-deletion of 1p19q (IDHmut-codel) or not (IDHmut-non-codel).; 

see Table S2A.i. Histological type is associated with IDH-1p19q codel status (FET p<0.0001) 

with 82% of IDHmut-codel cases classified as oligodendroglioma and 56% of IDHwt cases 
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classified as astrocytoma. The IDHwt group was predominantly WHO Grade III at diagnosis 

(76%) compared to the IDHmut classes (45%, FET p<0.0001). Age differs between IDH-codel 

groups (ANOVA p<0.0001) with IDHwt cases tending to be oldest at diagnosis (mean 49.9 

years) and IDHmut-non-codel cases tending to be youngest (mean 38.1 years), while IDHmut-

codel cases have intermediate age (mean 45.4 years).  IDHwt tumors are more likely to report 

family history of cancer (62%) compared to IDHmut tumors (40%, FET p=0.0228). Though this 

group tends to be older, IDHwt tumors tend to be more likely to have a family history of cancer 

after adjusting for age (adjusted odds ratio 2.05, p=0.0770). There is no evidence of association 

with familial history of primary brain tumor specifically. IDHmut tumors tend to present in the 

frontal lobe (68%) compared to IDHwt tumors (36%, FET p<0.0001). IDHwt present more 

frequently in the temporal lobe (45% versus 22% IDHmut, FET p=0.0010). There was no 

evidence of differences in first presenting symptom, extent of resection, or the use of pre-

operative medication by IDH-1p19q codel status. Though IDH status is not necessarily known at 

the time of diagnosis, the receipt of radiotherapy differs between the groups with IDHwt tumors 

most likely to receive radiotherapy as part of primary therapy (88%), and IDHmut-codel least 

likely (56%, p=0.0129). There is no evidence of a difference in pharmacotherapy receipt by IDH-

codel group (FET p=0.6390). 

Histological type was defined as astrocytoma, oligoastrocytoma, and oligodendroglioma and 

WHO grade was listed as grade II or grade III (Table S2A.ii). Fisher’s exact test (FET) was used 

to compare categorical variable distributions between the six type-grade groups. A simulated 

FET p-value was obtained from 107 cycles for large tables. Sub analyses collapsing across 

clinical groups or across tumor type and grade were also considered. Two-way Analysis of 

Variance (ANOVA) was used to compare continuous variables between type and grade. Few of 

these features are statistically associated with histological type and WHO grade. The few non-

US cases clustering in the WHO grade II, particularly astrocytoma, result in a marginally 

significant association for origin of case (FET, p=0.0688). For first presenting symptom, there is 

evidence of an association by tumor group for those with seizure versus all others (FET 

p=0.0086), but the association is not specifically due to histology (FET p=0.2088) or grade (FET 

p=0.1057). Overall, 54% of LGGs present first with seizure, whereas 25% present first with 

headache. Performing a two-way ANOVA on age at diagnosis, we found that grade is the 

significant predictor (p<0.0001), with grade III presenting in persons 6.7 years older than grade 

II, on average. Consistent with current clinical practice, grade III glioma cases are more likely to 
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report receipt of radiotherapy (88%) and/or pharmacotherapy (76%) compared to grade II cases 

(51%, FET p<0.0001 and 42%, FET p<0.0001, respectively).  

Survival Modeling: Summary of Results. There are 289 observations included in this study. 

Among these, 60 cases were deceased at the time of analysis with median overall survival (OS) 

estimated at 6.51 years (95% CI 5.24, 9.50). The median follow-up time is estimated at 1.45 

years (95% CI 1.28, 1.60), with 13% of cases with follow-up of at least 5 years. Additionally, 77 

cases experienced at least one progression or recurrence resulting in 88 events for the 

progression-free survival models (PFS, n=250). The median time to progression is estimated at 

3.30 years (95% CI 2.97, 4.46). Extent of resection is unknown for 10 cases. Models including 

extent of resection are based on 279 observations with 59 deaths for OS and 241 observations 

and 85 events for PFS. IDH-codel status was unknown for 11 cases. Models including IDH-

codel status are based on 278 observations with 58 deaths for OS and 241 observations and 86 

events for PFS. Models including both extent of resection and IDH-codel status are based on 

268 observations with 57 deaths and 85 events.  

Kaplan-Meier plots of estimated survival, overall and progression free, are presented in Figures 

S22.  Age at diagnosis differs significantly between the three LGG molecular groups and two 

GBM IDH groups used in the comparison of outcomes (one-way ANOVA p<0.0001); see Figure 

6B. In post-hoc t-tests the GBMwt group is significantly older than the other groups (mean+SD: 

61.0+12.7 years, p<0.001).  Also the IDHwt group is older (49.9+15.3 years) than the IDHmut-

non-codel (38.1+10.9 years) (p<0.001) and nearly so for GBMmut (42.0+13.6 years, p=0.083). 

The IDHmut-codel is significantly older (45.4+13.2 years) than the IDHmut-non-codel (p<0.001). 

Given that age at diagnosis is associated with overall survival and time to progression, we 

examined Cox regression models accounting for age and extent of resection. Table S2B 

presents estimates from single predictor models as well as multiple-predictor models (Models I 

– III) of overall survival. Similarly, Table S2C presents the estimates from single predictor 

models as well as multiple-predictor models (Models I – III) of progression-free survival. Table 

S2D presents estimates for single predictor an age adjusted models of overall survival 

associated with 5A. 

In the analysis of overall survival, the risk of death is significantly increased with increasing age 

(HR 1.38 per 5 years) and marginally with a less than gross total resection (HR 1.71) (Table 

S2B). A histological diagnosis of astrocytoma has a significantly increased risk (HR 2.26) 

compared to oligodendroglioma, but the mixed oligoastrocytoma is not a significantly increased 
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risk (HR 1.13). WHO grade III is associated with increased risk of death (HR 3.36) relative to 

WHO grade II. Wild-type IDH is associated with increased risk (HR 9.22) relative to IDHmut-

codel tumors, but IDHmut-non-codel tumors do not show significantly increased risk (HR 1.32). 

Prediction error curves for overall survival show an advantage for the IDH/Codel grouping 

relative to the Histology grouping (Figure S22i). The error curves are truncated at 5 years 

because we have less than 10% of the samples followed beyond that time. These trends are 

consistent after adjusting for age at diagnosis. 

In multivariable Model I, adjusting for age balances the effect of histological type with 

astrocytoma (HR 1.80) and oligoastrocytoma (HR 1.88) having increased risk relative to the 

oligodendroglioma type, though the risk is not significantly increased (Table S2B). The effect of 

a WHO grade III classification relative to grade II is retained (HR 3.60). In Model II, the IDHmut-

non-codel group is estimated to have increased risk compared to the IDHmut-codel group (HR 

1.80), though it is not statistically significant. The IDHwt group has substantially increased risk 

(HR 11.22). In Model III, increasing age (HR 1.37 per 5 years), a grade III diagnosis (HR 2.79), 

and an IDHwt molecular class (HR 6.67) remain statistically significant predictors of increased 

risk of death. The AUC for prediction of death by one year is improved from Model I to Model II, 

and the multi-predictor models are better than any of the single-predictor models. The AUC is 

slightly improved further with Model III (0.87).  

In the analysis of progression-free survival, the risk of an event is significantly increased with 

increasing age (HR 1.14 per 5 years) and marginally so with a less than gross total resection 

(HR 1.25; Table S2C). A histological diagnosis of astrocytoma has an increased risk (HF 1.60) 

compared to oligodendroglioma.  WHO grade III is associated with increased risk (HR 1.58) 

relative to WHO grade II. Wild-type IDH is associated with increased risk (HR 8.89) relative to 

IDHmut-codel tumors, but IDHmut-non-codel tumors do not show significantly increased risk 

(HR 1.48). Prediction error curves for progression-free survival show a consistent advantage for 

the IDH/codel grouping relative to the Histology grouping, which tends to follow the reference 

curve (Figure S22j). This trend is consistent after adjusting for age at diagnosis. 

In multivariable Model I, adjusting for age impacts the effect of histological type, with 

astrocytoma (HR 1.77) having increase risk relative to the oligodendroglioma (Table S2C). 

Oligoastrocytoma has some evidence of an increased risk (HR 1.70) compared to 

oligodendroglioma, but not statistically significant. The effect of a WHO grade III relative to 

grade II is retained (HR 1.69). In Model II, the IDHmut-non-codel group is estimated to have 
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increased risk compared to the IDHmut-codel group (HR 2.02) and the IDHwt group has 

substantially increased risk (HR 9.17). In Model III, increasing age (HR 1.10 per 5 years) and 

IDHwt molecular class (HR 8.30) retain significance as increasing the risk of an event. The AUC 

is improved between models I and II but nor further by model III.  

For models including GBM cases, there were 675 samples between the two datasets with 

complete information on age at diagnosis, overall survival, and IDH mutation. Of these 397 are 

GBM with 6% (n=24) having a mutation in the IDH1 gene. There were 345 deaths observed 

during follow-up for 49% censoring. Data on extent of resection are not available, so adjusted 

models only include age.  

Table S2D provides estimates of the hazard ratios from a Cox regression model using the five 

classes (IDHmut-codel, IDHmut-non-codel, IDHwt, GBMmut, GBMwt) as predictors alone (left 

column) and adjusting for age at diagnosis (right column). The IDHmut-codel and IDHmut-non-

codel do not have significantly different hazard rates, nor do the IDHwt and GBMmut groups. 

Otherwise all other pairs of groups differ in overall survival risk. The same trends hold when 

adjusting for age, though the risk is muted in some, especially for comparisons involving GBMwt 

cases, which have the oldest age at diagnosis. In particular, the increased risk for GBMwt 

tumors compared to IDHwt tumors becomes non-significant after accounting for age.  

Comparison of Clinical Subtypes to Molecular Clustering Solutions 

Clustering solutions for LGG were defined for each molecular platform used in this project. 

Summary solutions such as the “cluster-of-clusters” (CoC) and Oncosign clustering were also 

constructed (see Figure 1, 3). Here we quantify how well specific clustering solutions relate to 

the IDH/codel status. We chose to use the adjusted Rand index (ARI) which quantifies how 

often a pair of samples is segregated into the same cluster by the IDH/codel classification and 

the clustering solution. The ARI adjusts for the likelihood of random concordance. If two 

classification methods are not associated beyond random chance, the ARI has an expected 

value of 0. If two classification methods result in identical segregation, the ARI is 1. Negative 

values are possible if classification methods are more discordant than expected by chance. It is 

not required that the classification methods compared have the same number of classes.  

Methods. Molecular clustering solutions, IDH/codel classification, and histology/grade 

assignment can be found in Table S1. The estimates were made using the adjusted Rand Index 

(mclust) function in R. Only the 209 samples with clustering groups defined in each of the 7 
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molecular classes, IDH/codel classes and with histology/grade information are considered so 

that the measures are more directly comparable. Bootstrap sampling was used to construct 

95% confidence intervals for the ARI estimates (m=1000 samples).  

Summary of Results. In Table S2E, ARI values are provided for each classification and 

clustering scheme against the IDH/codel classification. ARI values are also given for similarities 

with the three histology groups and the six histology and WHO grade groups. The summary 

solutions resulting from the “cluster-of-clusters” (CoC) and Oncosign show relatively strong 

concordance with ARI of 0.79 and 0.83, respectively. Moderate to strong concordance is also 

shown with some of the single-molecular type classifications. Notably, there is little similarity 

(scores near zero) for the histology/grade classes with respect to the molecular clustering 

solutions.  

Prognostic Ability of IDH/Codel Subtypes and Molecular Clustering Solutions 

There are 257 samples with clinical data (including extent of resection), IDH/Codel status, CoC 

assignment, Oncosign assignment, and survival follow-up (time>0). Of these 57 experienced a 

death during their follow-up.  

A base model of overall survival using age at diagnosis and extent of resection as predictors 

shows that age is a significant predictor of OS (HR 1.41, p<0.0001) but extent (<GTR vs GTR) 

is not (HR: 1.19, p=0.56). For this model, the AUC for prediction of survival is 0.74 at one year. 

Since GTR is a standard predictor in overall survival it will be retained in the following models. 

The addition of IDH/codel status to the base model is significant (likelihood ratio test (LRT), 

p<0.0001). IDHwt increased risk of death (HR 11.4, 95%CI: 5.0, 26.3) relative to IDHmut-codel. 

There is not significant evidence of a difference between the IDHmut-codel and IDHmut-non-

codel groups (HR 1.8, 95% CI: 0.9, 3.7). The AUC for prediction of survival is 0.85 at one year. 

Similarly, adding CoC group to the base model is significant (LRT, p<0.0001). CoC2 increased 

risk of death relative to CoC3 (HR 9.2, 95%CI: 4.2, 20.0). This is as expected since 82% of the 

tumors in CoC2 are IDHwt and 94% of the COC3 tumors are IDHmut-codel. Similarly, since 

CoC1 is primarily composed of IDHmut-non-codel tumors (96%), there is not significant 

evidence of a difference between CoC1 and CoC3 (HR 1.7, 95% CI: 0.8, 3.6). The AUC for 

prediction of survival is 0.84 at one year.  
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Adding Oncosign group to the base model is also significant (LRT, p<0.0001). OSC4 has 

increased risk of death relative to OSC1 (HR 6.9, 95%CI: 3.0, 15.8). Again, this is as expected 

since 100% of the tumors in OSC4 are IDHwt and 97% of the OSC1 tumors are IDHmut-non-

codel tumors. Similarly, since OSC2 and OSC3 are primarily composed of IDHmut-codel tumors 

(100%, 67%, respectively), there is not significant evidence of a difference in OSC2 (HR 0.5, 

95% CI: 0.2, 1.1) or OSC3 (HR 0.6, 95% CI: 0.1, 2.6), relative to OSC1. The AUC for prediction 

of survival is 0.84 at one year.  

The survival model using IDH/codel status captures the information found in either of the more 

complex molecular clusterings (Cluster of Clusters and OncoSign). Predictive accuracy is 

minimally improved when we can add WHO grade to our model with IDH/codel status (LRT 

p=0.0005). Though, grade is a significant predictor in this model, with grade III having increased 

risk of death (HR 3.1, 95%CI: 1.6, 6.1), the AUC for prediction of survival is only 0.86 at one 

year with this model.  

In contrast, the addition of histology diagnosis to the base model is significant (LRT, p=0.0013) 

and WHO grade is additionally significant (LRT, p<0.0001). In the model with histology and 

grade, we see that astrocytoma has increased risk of death (HR 2.4, 95%CI: 1.2, 4.5 ) relative 

to oligodendroglioma. There is not significant evidence of a difference between the 

oligoastrocytoma and oligodendroglioma diagnoses (HR 1.9, 95% CI: 0.9, 4.1). There is a 

significant increase of risk for grade III tumors relative to grade II (HR 3.8, 95% CI: 1.9, 7.4). The 

AUC for prediction of survival is 0.81 at one year. If grade were excluded, the AUC for prediction 

of survival based on histology is 0.76 at one year. 

2 Whole genome and exome sequencing 

To this section on mutation calling was contributed by: Esther Rheinbay, David Haussler, 

Katayoon Kasaian, Jaegil Kim, Amie Radenbaugh, Mara Rosenberg, Sofie Salama, Carrie 

Sougnez, Chip Stewart, Hailei Zhang. 

Correspondence and questions should be directed to:  Esther Rheinbay 

(esther@broadinstitute.org) 

To this section on structural variants was contributed by: Mia Grifford, Zack Sanborn, 

Siyuan Zheng, Roel G.W. Verhaak, Sofie Salama and David Haussler 
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Correspondence and questions should be directed to:  Sofie Salama 

(ssalama@soe.ucsc.edu) 

a) Whole exome and whole genome sequencing data production 

Whole exome sequencing of 0.5-3 micrograms of DNA from tumor and normal blood samples 

was performed as previously described (Cancer Genome Atlas Research, 2012). Exome 

capture was performed using the Agilent Sure-Select Human All Exon v2.0, 44Mb kit, followed 

by 2 x 76 bp paired-end sequencing on the Illumina HiSeq platform. For whole genome 

sequencing, 2 x 101 bp reads were sequenced on the same platform. Read alignment and 

processing were performed using BWA and the Picard and Firehose pipelines at the Broad 

Institute as previously described (Institute, 2014). 

b) Identification of somatic mutations (Mutect/Broad Institute) 

Alignments were first subjected to quality control to avoid mix-ups between tumor and normal 

samples, as well as cross-contamination between tumor samples using ContEst (Cibulskis et 

al., 2011). Only samples with less than 4% of estimated cross-contamination were further 

analyzed. We used MuTect algorithm version 1.1.6 (Cibulskis et al., 2013) to generate somatic 

mutation calls, which were subsequently filtered to remove any spurious calls due to shearing-

induced generation of 8-oxoguanine (Costello et al., 2013). Indels were identified using the indel 

locator algorithm as previously described (Chapman et al., 2011). Details and tools are available 

at www.broadinstitute.org/cancer/cga.  

c) Identification of somatic mutations (RADIA/University of California 

Santa Cruz) 

Single nucleotide somatic mutations were identified by RADIA (RNA AND DNA Integrated 

Analysis), a method that combines the patient matched normal and tumor DNA whole exome 

sequencing (DNA-WES) with the tumor RNA sequencing (RNA-Seq) for somatic mutation 

detection(Radenbaugh AJ et al., 2014). The inclusion of the RNA increases the power to detect 

somatic mutations, especially at low DNA allelic frequencies. By integrating the DNA and RNA, 

mutations that would be missed by traditional mutation calling algorithms that only examine the 

DNA can be rescued back.  RADIA classifies somatic mutations into 3 categories depending on 

the read support from the DNA and RNA:  1) DNA mutations – mutations that had high support 

in the DNA, 2) RNA Confirmation calls – mutations that had high support in both the DNA and 

RNA, 3) RNA Rescue calls – mutations that had high support in the RNA and weak support in 
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the DNA.  Here our analysis pipeline identified 13,720 DNA mutations, 3,926 RNA Confirmation 

calls, and 1,015 RNA Rescue calls.   

d) Identification of somatic mutations (Baylor College of Medicine) 

Methods were used to identify mutations as previously described (Cancer Genome Atlas 

Research, 2013a). 

e) Identification of somatic indels (Strelka/BC Cancer Agency) 

Strelka (Saunders et al., 2012) (v1.0.6) was used to identify somatic single nucleotide variants, 

and short insertions and deletions from the TCGA LGG exome dataset. All parameters were set 

to defaults, with the exception of "isSkipDepthFilters", which was set to 1 in order to skip depth 

filtration given the higher coverage in exome datasets. 307 pairs of libraries were analyzed. 

When a blood sample was available, it served as the matched normal specimen; otherwise, the 

matched normal tissue was used. The variants were subsequently annotated using SnpEff 

(Cingolani et al., 2012), and the COSMIC (v61)(Forbes et al., 2010)  and dbSNP (v137) (Forbes 

et al., 2010) databases. 

f) Generation of exome “consensus” mutation set 

Based on the mutation tables from the three centers, a “consensus” set was generated using 

custom scripts according to the following criteria: 1) For SSNV, a mutation was included if it was 

called by at least two out of the three calling centers. Identical chromosomal position as well as 

nucleotide change were required. 2) Indel calls were provided by two centers (Baylor College of 

Medicine and Broad Institute). An indel was included in the consensus mutation table if it was 

called by both centers, allowing a maximum distance of 10 nucleotides between sites. 

Functional annotation of mutations was performed with Oncotator 

(http://www.broadinstitute.org/cancer/cga/oncotator) using Gencode V18. Somatic mutation 

calls were filtered to remove common artifacts and germline variation. 

g) Mutation annotation, validation and TERT promoter assay 

 Functional annotation of mutations was performed with Oncotator  

(http://www.broadinstitute.org/cancer/cga/oncotator) using Gencode V18.                          

Validation of somatic mutations.  Targeted resequencing of selected mutations for validation 

was performed using a microfluidic device (Fluidigm). A total of 19 mutations in the genes 

identified by MutSig analysis (ARID1A, ATRX, CIC, EGFR, FUBP1, IDH1, IDH2, NF1, NOTCH1, 

PIK3CA, PIK3R1, PLCG1, PTEN, PTPN11, SMARCA4, TCF12, TP53, ZBTB20, ZCCHC12) as 
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significantly mutated in LGG as well as additional genes with known roles in glioma (CDKN2A, 

PDGFRA, BRAF, RB1) were selected for targeted resequencing. PCR primers were designed 

around sites of interest with desired amplicon size of 200 bp. 20 – 50 ng of each DNA sample 

was mixed with oligonucleotides containing Illumina adapter sequences, a sample-specific 

molecular barcode and a sequence complementary to the primer tails. This mixture was used as 

the PCR template for each sample amplified on the Fluidigm access array. This method allowed 

the use of universal PCR primers while ensuring all amplicons for a given sample received the 

same sequencing barcode. PCR was performed on the Fluidigm access array according to 

manufacturers’ instructions. Barcoded libraries were recovered for each sample in a single 

collection well on the Fluidigm access array, quantified using PicoGreen® dsDNA Quantitation 

Reagent (Invitrogen, Carlsbad, CA) and concentrations normalized across libraries. Libraries 

were loaded on the Illumina MiSEQ instrument and sequenced using paired end 150bp 

sequencing reads. Mutations were categorized according to base substitutions, with C>T 

transitions having the highest frequency (Figure S12). 

In addition to targeted resequencing (available for 260 patients), mRNA-sequencing (available 

for 280 patients), and whole-genome sequencing data (available for 19 patients) were included 

as independent validation data sources.  

Validation status of a given powered site was determined as previously described8. In brief, a 

site was considered “powered” if at least two alternate alleles were present in the tumor 

validation data, and the detection power was greater than or equal to 0.95. 96.3 percent of 

mutations in significantly mutated genes validated in mRNA-sequencing, 99.4% in targeted 

resequencing, and 100% in WGS data. For indels, validation rates were 81.2% for mRNA-seq, 

96.4% for targeted resequencing and 100% for WGS. Because of detection issues of large 

indels in targeted resequencing, we manually reviewed these mutations to exclude false 

negative calls. Based on negative validation results, two EGFR mutations were removed from 

the final analysis set. One IDH1 mutation was added manually to the mutation table as it was 

not called by any of the three centers but was observed in RNA and targeted sequencing data. 

TERT promoter mutation assay. Targeted assay of the TERT promoter region was performed 

as previously described (The Cancer Genome Atlas Research Network (2014) Integrated 

Genomic Characterization of Papillary Thyroid Carcinoma. Cell (in press)). Paired-end 

sequencing with 150 bp read length was performed of PCR amplicons of length 273 bp to ultra-

high depth (median coverage at site 1295228: 91430; range 242-234201) on a Illumina MiSeq 
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instrument. Sites in the interval ch5:1295150-1295300 were considered for mutation calling, 

however, six sites were blacklisted due to particularly low average base quality. Samtools 

mpileup was used to extract base calls and original base qualities. We then applied a custom 

script to call mutations at non-blacklisted sites in the calling interval, considering only bases with 

quality >=25. Only sites with alternative allele fraction above 5% were classified as mutated. 

h) Mutation significance analysis 

Driver mutations were identified with the MutSig2CV algorithm (Lawrence et al., 2014) applied 

to the consensus mutation call set. Genes with q-values above 0.1 were considered significantly 

recurrently mutated (Supplemental Table 4A). After this discovery step, we examined mutation 

calls made by each individual center to exclude false negative decisions on driver genes. 

Single-center mutation calls were added to the final mutation table (Figure 2) if they had 

additional support in the validation experiment from at least one independent data type (RNA-

seq, WGS or targeted sequencing). MutSig2CV analysis was also conducted separately on the 

three molecular subtypes, and results for these runs are presented in Supplemental Tables 4B-

D. 

i) Exome analysis to identify candidate double minute chromosomes  

Samples likely to contain circular amplicons corresponding to double minute chromosomes 

(DM) or homologously staining regions (HSR) were identified as in Sanborn et al. (Sanborn et 

al., 2013). Briefly, tumor and matched normal exomes were processed by BamBam to compute 

relative coverage and identify somatic rearrangements. Tumors with multiple high copy number 

peaks (5-fold increased relative coverage versus their matched normal) were manually analyzed 

to discover any oncogenes within peaks, associate peaks with nearby somatic rearrangements, 

and determine if a sample exhibits multiple peaks with similar copy number levels. Samples 

were scored as having possible DM/HSR if they either contained multiple distinct high copy 

number peaks with similar copy number levels and at least one peak contained an oncogene, or 

a single distinct peak that spanned approximately 1 Mb, contained an oncogene and had an 

associated rearrangement. Results are summarized in Table S5 (tab “DM_HSR”). 

For one potential DM/HSR sample, TCGA-CS-5395, whole genome sequencing data was 

available, allowing us to precisely reconstruct a circular amplicon according to published 

methods (Sanborn et al., 2013)(Figure S17).  
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j) DNA rearrangement analysis  

We used BamBam (Sanborn et al., 2013) to identify genomic rearrangements and compute 

relative copy numbers between pairs of tumor and matched normal coordinate-sorted BAM files. 

Briefly, BamBam uses a dynamic windowing approach that aggregates read counts in both 

tumor and normal data sets within genomic windows defined such that each window contains a 

roughly equivalent number of reads from the tumor and/or normal data sets, thereby producing 

large windows in regions of low coverage to improve signal-to-noise ratio and small windows in 

highly amplified regions to increase the resolution of amplicon boundaries. This method 

identified both local and chromosome-level deletions and amplifications in these samples. 

Potential intra- and interchromosomal rearrangements were discovered using discordant paired 

reads, where each read in the discordant pair map to disparate regions of the reference 

sequence. The discordant paired-end reads from both tumor and normal data sets were 

clustered according to their genomic location to define an approximate genomic region of the 

putative breakpoint. 

Where possible, the breakpoints discovered from paired-end clustering were refined using split 

reads anchored near the breakpoints. These split reads were discovered from unaligned reads 

anchored near the breakpoint by a mapped mate.  Breakpoints were filtered using a minimum 

criterion of 4 discordant reads supporting the rearrangement and average mapping quality of 20 

for the reads spanning the rearrangement break point. BamBam rearrangements reported in 

Figure 5B and Table S5 correspond to those found with whole genome sequencing, low pass  

whole genome sequencing or exome sequencing that had at least 10 discordant reads 

supporting the breakpoint, spanning read mapping quality of at least 30 and split read evidence 

directly overlapping the putative breakpoint’s junction with a split read score of at least 50. 

3 Low pass genome wide DNA sequencing 

To this section was contributed by: Christopher A. Bristow, Lixing Yang, Xingzhi Song, 

Semin Lee, Sahil Seth, Jianhua Zhang, Lynda Chin, Peter J. Park, Raju Kucherlapati, Alexei 

Protopopov. 

Correspondence and questions should be directed to:  Christopher A. Bristow 

(cabristow@mdanderson.org) and Alexei Protopopov (aprotopopov@mdanderson.org) 
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a) Library construction and sequencing  

Illumina pair-end libraries were generated from genomic DNA according to the manufacturer’s 

protocol (Illumina Inc.) with modification. Briefly, 500 ng to 700 ng of genomic DNA was sheared 

into ~200 base-pair fragments using the Covaris plate with E220 system (Covaris, Inc. Woburn, 

MA). Libraries were generated using KAPA Bio kits with the Caliper robotic NGS Suite 

according to the manufactures’ protocols (PerkinElmer). Libraries for 52 tumor-normal pairs 

were sequenced in paired-end mode, with the 51 bp read length, using the Illumina HiSeq 2000. 

Each lane was loaded with a single sample, with the tumor and normal typically run on the same 

flowcell. The average sequence coverage, read quality, and percentage of mapped reads was:  

5.2x, 39.5, and 96.5%, respectively. Raw sequencing reads were converted to FASTQ formed 

data using CASAVA (Illumina) and then mapped to the human genome with the Burrows-

Wheeler Aligner (Li and Durbin, 2009) to generate .bam files that are stored and accessible on 

CGHub.   

b) Identification of copy number variants   

To characterize somatic copy number alterations in the tumor genome, we applied BIC-seq (Xi 

et al., 2011), a previously developed algorithm. Briefly, we first counted uniquely aligned reads 

in fixed-size, non-overlapping windows along the genome. Given these bins with read counts for 

tumor and matched normal genomes, BIC-seq attempts to iteratively combine neighboring bins 

with similar copy numbers.  Whether the two neighboring bins should be merged is based on 

Bayesian Information Criteria (BIC), a statistical criterion measuring both the fit and complexity 

of a statistical model.  Segmentation stops when no merging of windows improves BIC, and the 

boundaries of the windows are reported as a final set of copy number breakpoints. Consecutive 

segments with copy ratio difference smaller than 0.1 (log2 scale) were merged in the post-

processing step to avoid excessive refinement of altered regions with high read counts. BICseq 

DNA copy number profiles can be obtained from 

http://gdac.broadinstitute.org/runs/stddata__2014_04_16/data/LGG/20140416/gdac.broadinstitu

te.org_LGG.Merge_cna__illuminahiseq_dnaseqc__hms_harvard_edu__Level_3__segmentatio

n__seg.Level_3.2014041600.0.0.tar.gz. 

c) Translocation discovery with BreakDancer and MEERKAT 

Structural Variation detection is performed with the program BreakDancer (Chen et al., 2009) on 

a .bam file constructed from HiSeq sequencing of each tumor pair. The first step requires a 
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configuration file of each bam file for each tumor pair with the bam2cfg.pl perl module of the 

program.  After the configuration file, the perl module BreakDancerMax.pl is run on the 

configuration file in order to call structural variants in the tumor and control files. Each tumor 

structural variant file is filtered with its matched normal to remove any false positives. Structural 

variations are also detected by Meerkat (Yang et al., 2013) which require at least two  

discordant  read pairs  supporting  one  event and  at  least  one  read covering the breakpoint  

junction.  Each variant detected from tumor genome is filtered with all normal genomes to 

remove germline events. The structural variants are filtered out if both breakpoints fall into 

simple repeats or satellite repeats.   

4 DNA copy number analysis 

To this section was contributed by: Andrew D. Cherniack, Hailei Zhang, Bradley A. Murray, 

Gordon Saksena, and Carrie Sougnez 

Correspondence and questions should be directed to:  Andrew D. Cherniack 

(achernia@broadinstitute.org) 

To interrogate genome wide DNA copy number levels, all tumor and normal samples were 

analyzed using Affymetrix SNP6.0 GeneChip arrays, as described previously (Cancer Genome 

Atlas Research, 2008, 2011, 2012, 2013a, b, 2014; Cancer Genome Atlas Research et al., 

2013). Somatic copy number alterations (SCNAs) in 285 low grade gliomas were determined by 

SNP 6.0 analysis. Within each histological class, heterogeneous patterns of SCNAs were 

observed (Figure S8A). Similar to GBMs, chromosomal 7 gain with chromosome 9p and 

chromosome 10 loss were seen in all histological types.  Additional arm level changes were 

seen in astrocytomas and oligoastrocytomas, but 1p loss and 19q loss were specific to 

oligodendrogliomas.  GISTIC 2.0 analyses identified significantly reoccurring focal amplifications 

containing the oncogenes MDM4, EGFR and CDK4 and deletion of the tumor suppressor 

CDKN2A in all histological groups (Table S3). Reoccurring 4q12 amplifications containing 

PDGFRA, KDR and KIT were found in astrocytomas and oligodendrogliomas but not 

oligoastrocytomas. 

Distinct patterns of SCNAs become apparent when tumors were analyzed by molecular 

subtypes. In addition, unsupervised hierarchical clustering of arm level alterations produced 

three major clusters in which 87% of the tumors clustered with other members of their molecular 
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subtype (Figure S8B). Tumors without IDH mutations (IDHwt) have patterns of both broad and 

focal SCNAs that are highly reminiscent of what is observed in GBM and dissimilar to tumors 

with IDH mutations (IDHmut) (Brennan et al., 2013).   In particular, co-occurrence of both 7 gain 

and 10 loss occurs in 50% of tumors in this subgroup, yet this event is absent in IDHmut tumors. 

Reoccurring focal amplifications containing EGFR, MDM4 and SOX2 are also seen exclusively 

in IDHwt LGGs (Figure S14). The IDHmut-non-codel subgroup is different from the other two 

groups in that many tumors have either broad or focal amplification in 8q, possibly implicating 

MYC in this tumor type.  Also unique to IDHmut-non-codel tumors are 10p amplifications in 

27%, reoccurring focal amplifications containing MYCN and focal deletions containing ATRX.  

The IDHmut-codel subgroup has few reoccurring broad or focal copy number alterations outside 

of 1p and 19q deletions. These include reoccurring 4q12 focal amplifications and 1p focal 

deletions including CDKN2C that were present in a few.  The IDHmut-codel group is also unlike 

the others in that it lacks reoccurring homozygous focal deletions of CDKN2A. 

5 RNA sequencing 

To the section on expression clustering was contributed by: Mark Vitucci, Siyuan Zheng, 

Olena Morozova, Da Yang, Youting Sun, Yuexin Liu, Brady Bernard, Sheila Reynolds, W.K. 

Alfred Yung, Greg Fuller, Wei Zhang, Mia Gifford, David Haussler, Ilya Shumlevich, Sofie 

Salama, Kenneth D. Aldape, Roel G.W. Verhaak, Ryan Miller 

Correspondence and questions should be directed to:  Ryan Miller 

(Ryan_Miller@med.unc.edu), Roel G.W. Verhaak (rverhaak@mdanderson.org)  

To the section on gene fusions was contributed by: Olena Morozova, Siyuan Zheng, Isaac 

Joseph, Sol Katzman, Arjun Rao, David Haussler, Lior Pachter, Sofie Salama, Roel G.W. 

Verhaak 

Correspondence and questions should be directed to:  Sofie Salama 

(ssalama@soe.ucsc.edu), Roel G.W. Verhaak (rverhaak@mdanderson.org)  

a) RNA sequencing data generation 

RNA was extracted, prepared into mRNA libraries, and sequenced by Illumina HiSeq resulting 

in paired 50nt reads, and subjected to quality control as previously described (Cancer Genome 

Atlas Research, 2012). RNA reads were aligned to the hg19 genome assembly using Mapsplice 

(Wang et al., 2010).  RNA fusion events were automatically detected by MapSplice as 
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previously described (Cancer Genome Atlas Research, 2012). Note that these MapSplice fusion 

transcript annotations are available through the TCGA portal, but MapSplice fusion events were 

not used in the figures of this manuscript. Gene expression was quantified for the transcript 

models corresponding to the TCGA GAF2.1 using RSEM (Li and Dewey, 2011) and normalized 

within-sample to a fixed upper quartile.  For further details on this processing, refer to 

Description file at the DCC data portal under the V2_MapSpliceRSEM workflow. Gene-level 

data was restricted to genes expressed in at least 70% of samples.  Data were Log2 

transformed and median centered across samples prior to further analysis. 

b) Expression clustering and subtype election 

The most variable genes were selected as the 1500 genes with the highest median absolute 

deviation.  Consensus clustering was performed using ConsensusClusterPlus (Wilkerson and 

Hayes, 2010)  (1000 iterations, resample rate of 80%, and Pearson correlation) and at k=6 a 

local maxima is reached.  254 out of 266 gliomas are in one of four subtypes.  These four 

subtypes were further restricted to 239 “core” members based on positive silhouette width 

values (Rousseeuw, 1987).  Single sample gene set enrichment was performed as previously 

described (Barbie et al., 2009) using astrocytoma (Gorovets et al., 2012) and neural ontology 

(Cahoy et al., 2008) signatures.  For neural ontology signatures, the 500 most highly expressed 

genes per subtype were used.  Subtype-specific genes used in Figure S6 and S7 were the 100 

most highly expressed genes per class as defined by a 1-versus rest 2-class SAM (Tusher et 

al., 2001) (Table S7). 

c) Gene expression clustering results 

To identify mRNA expression subtypes, we performed unsupervised hierarchical clustering 

analysis on 266 gliomas using the 1500 most variably expressed genes across samples (Figure 

S6).  Core members in four well-defined subtypes were identified and found to be distinctly 

enriched for previously defined astrocytoma subtype and neural ontology signatures and 

correlated with specific genomic events (Figure S7). Notably, expression subtype R2 was 

mostly composed of G3 tumors (77%), were mostly astrocytoma histology (68%), was enriched 

for methylation subtype M2 (62%) and IDHwt (67%) tumors, and correlated with GBM-related 

events such as PTEN mutation, chromosome 10 loss, and EGFR mutation and amplification.  

These were also enriched for the pre-glioblastoma expression signature previously identified in 

poor-surviving and IDHwt astrocytomas (Gorovets et al., 2012).  Accordingly, R2 showed 

significantly worse survival as compared to the other RNA subtypes, which did not significantly 

differ from one another (Figure S6). The other RNA subtypes (R1, R3, R4) were populated with 
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IDH-mutant gliomas.  R1 lacked 1p/19q codeletion, was comprised of two methylation subtypes 

M5 (70%) and M3 (30%), and the vast majority had TP53 and ATRX mutations.  Conversely, R3 

was entirely composed of IDHmut-codel gliomas, and was equally distributed across 

methylation subtypes M2 and M3.  It was also enriched for oligodendrogliomas (85%), 

mutations in NOTCH1, FUBP1, CIC, and oligodendrocyte progenitor-specific expression.  Both 

R1 and R3 highly expressed an early progenitor-like astrocytoma gene signature.  In contrast to 

the other expression subtypes, R4 was not overwhelmingly associated with a single molecular 

or methylation subtype, grade, histopathology, mutation, or genomic copy number event, but 

was heterogeneous throughout.  However, R4 did highly express a neuron-specific signature 

and a neuroblastic astrocytoma signature (Figure S7B).  Genes that characterize each of the 

expression subtypes (using a 2-class SAM algorithm) are shown in Table S7.  In addition, gene 

ontology analyses using DAVID are shown in Table S7 to elucidate biologic characteristics for 

each of the expression subclasses. To address whether R4 tumor purity was lower than other 

subtypes, and may contain a higher ratio of native neurons to tumor cells, which could lead to 

enrichment in neuron-related signatures, we compared purity measurements across subtypes. 

We found average purity of R4 gliomas was 67.5%, lower than the next least pure subtype R2 

at 71.3% (P=0.06), and significantly lower than R1 and R3 (P > 0.009).  In GBM, the neural 

subtype also showed high expression of this neuron-specific signature and those neural GBM 

were not less pure than the other GBM subtypes (Verhaak et al., 2010).  Therefore, the explicit 

genotypic and phenotypic causes for variable transcription across glioma subtypes remains 

undefined, but gene signature enrichment patterns in Figure S7 suggest that transcriptomal 

subtypes of non-GBM gliomas are influenced by the lineage and differentiation state of the initial 

tumor cell of origin.   

d) Fusion transcript detection using deFuse 

RNA-Seq reads were analyzed using deFuse package version 0.6.0 (McPherson et al., 2011). A 

selection of deFuse predictions was computationally verified by aligning reads against the 

predicted transcript structure using TopHat (Trapnell et al., 2009) and visualizing the resulting 

alignments in the UCSC Genome Browser (Morozova, Grifford et al, in preparation). A Support 

Vector Machine (SVM) classifier available as part of the deFuse package was trained on 13 

events verified as described above as well as 8 events predicted by both PRADA and defuse 

(21 events total). Following SVM analysis, candidate fusions were filtered based on the 

following deFuse parameters: 

Splitr_count > 3 
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Span_count > splitr_count 

SVM score > 0.65 

Read_through ~ “N” 

Splitr_span_pvalue > 0.1 

Repeat_proportion1 < 0.78 

Repeat_proportion2 < 0.78 

Genome_breakseqs_percident < 0.1 

Span_coverage_max > 1.2 

All fusions that passed this filtering process are provided in Table S6 (events marked “deFuse” 

in “PRADA&deFusewithDNA” worksheet). Gene fusions affecting protein kinases and 

significantly mutated genes were further manually curated by tiled BLAT alignment analysis 

(Kent, 2002) of the fusion breakpoints using the UCSC Genome Browser (Karolchik et al., 2014) 

and examining the resulting alignment patterns (Table S6, “deFuse_reviewed” worksheet).  The 

predicted protein sequences of gene fusions affecting EGFR and FGFR3 are provided in Table 

S6 “Protein_sequences_RTK_fusions” worksheet. 

e) Fusion transcript detection using PRADA 

Transcript fusions were detected in 272 LGG samples by analyzing RNA sequencing data using 

the Pipeline for RNAseq Data Analysis (PRADA) (http://sourceforge.net/projects/prada/) for 

gene fusions(Torres-Garcia et al., 2014). PRADA aligned RNAseq reads to a composite 

reference database composed of whole genome sequences (hg19) and transcriptome 

sequences (Ensembl64). Two lines of evidence were required for identification of a gene fusion: 

1) a minimum of two discordant read pairs mapping to a candidate gene pair; 2) a minimum of 

one junction spanning read mapping to a junction that connected exons between the candidate 

gene pair, with its pair mate mapping to the either of the two genes. Several filters were applied 

to remove false positives and artifacts, of which the most prominent is based on significant 

sequence similarity between the two fusion genes (using BLASTN, Expect value = 0.01). 

Specific details of the PRADA pipeline are described elsewhere (Torres-Garcia et al., 2014). 

PRADA predictions satisfying these criteria are listed in Table S6 “PRADA&deFusewithDNA” 
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worksheet marked “PRADA”. A summary of deFuse and PRADA predictions supported by DNA 

evidence or manual review are listed in Table S6 “Fusions_with_evidence” worksheet. 

f) Quantification of fusion transcript isoform expression 

For samples from the two patients with FGFR3-TACC3 and EGFR-SEPT14 fusions, 

respectively, we constructed plausible fusion transcript splice isoforms (FTSIs) based on 

predicted genomic fusion breakpoints from deFuse and Ensembl (Flicek et al., 2014) 

transcriptome assembly GRCh37 (hg19) database version 72. Genomic fusion breakpoints 

were filtered according to methods described in the RNA-Seq fusion analysis section of the 

supplementary material. Plausible FTSIs were added to the normal transcriptome to create a 

unique FTSI-appended transcriptome for each patient.  

Plausible FTSIs were constructed by the following procedure: for each genomic fusion 

breakpoint, we enumerate a list of transcript splice isoforms crossing the upstream and 

downstream genomic breakpoint locations. Then, for each pairwise combination of upstream 

and downstream breakpoint-crossing isoforms, we append the appropriate regions from each 

transcript to create a plausible FTSI.  

After appending each transcriptome with plausible FTSIs, we aligned RNA-Seq reads to the 

appended transcriptome using bowtie2 v 2.1.0 (Roberts et al., 2013), allowing for all possible 

alignments of each read, maximum fragment length of 800, and length of seed substring 25 

(bowtie2 -a -X 800 -L 25 …). We then ran eXpress (Roberts and Pachter, 2013) v1.4.0 with 

default parameters on the resultant aligned reads.  

Finally, in order to increase the accuracy of the expression estimates for the FTSIs and their 

constituent transcripts, we modified reXpress (Roberts et al., 2013). The modified version runs 

extra expectation-maximization (EM) rounds of eXpress on only specified transcripts for 

computational efficiency purposes; each EM round increases the likelihood of the probabilistic 

model for read generation by updating abundance and other parameters. The modified version 

will be released shortly at http://bio.math.berkeley.edu/ReXpress/, and this behavior is known as 

‘focus’ mode. We used parameters for 50 maximum alignments for each read, and partitioning 

of the transcript graph via the greedy algorithm (reXpress --greedy --max-alignments=50 --focus 

…). The resultant expression estimates allow for comparison of the expression of the FTSIs with 

all transcripts in the reference transcriptome, including the constituents of the fusion transcripts. 
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6 MicroRNA sequencing 

To this section was contributed by: A. Gordon Robertson, Brady Bernard, Reanne Bowlby, 

Denise Brooks, Andy Chu 

Correspondence and questions should be directed to: A. Gordon Robertson 

(grobertson@bcgsc.ca) 

a) Methods 

microRNA sequence (miRNA-seq) data were generated for 293 tumors using previously 

described methods (Cancer Genome Atlas, 2012). We used unsupervised NMF consensus 

clustering of reads-per-million (RPM) data to identify groups of samples with similar abundance 

profiles; as previously described (Cancer Genome Atlas, 2012), the input was the ~300 (25%) 

most-variant 5p or 3p miRBase v16 mature strands. We generated a log2, median-centered 

heatmap for the discriminatory miRNAs that had the top of scores (e.g. 5%) in each of the five 

NMF metagenes (Gaujoux and Seoighe, 2010). For the heatmap, columns (samples) in a RPM-

normalized abundance matrix were ordered to match the NMF result. Rows of this matrix (i.e. 

miRNA abundances) were log2-transformed, median-centered, and then hierarchically clustered 

using an absolute centered correlation distance metric and average linkage(de Hoon et al., 

2004). 5p and 3p strand names were assigned using miRBase v20.  

Contingency table association P-values were generated with a Fisher exact test using R v3.0.x. 

Kaplan-Meier curves were calculated using the survival package v2.37-7 in R 3.0.3. Tumor 

purity was estimated using ABSOLUTE (Carter et al., 2012).  

We used SAMseq’s (samr v2.0, R 3.0.2) two-class unpaired analyses with a read count input 

matrix and an FDR threshold of 0.05 to identify miRs that were differentially expressed (see 

Overview worksheet in Table S8). Each run generated a pair of files: genes ‘up’ and ‘down’. We 

filtered each file by removing miRs with median expression less than 50 RPM in either of the 

input sample groups (Tay et al., 2014), and miRs for which the Wilcoxon adjusted P-value was 

greater than 0.05; then ranked the filtered results by a median-based fold change. 

We calculated anticorrelations between normalized abundance for miRNA mature strands 

(RPM) and RPPA data for 189 antibodies with MatrixEQTL v2.1.1 (Shabalin, 2012), after 

transforming miR and antibody abundances into integer ranks. We worked with the 255 of 293 

miRNA tumor samples that were present in both miRNA and RPPA data. Restricting the miRs to 

the 481 mature strands with a mean RPM above the 60th percentile (0.83 RPM), we calculated 
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correlations with a P-value threshold of 0.05, and filtered the resulting anticorrelations by 

FDR<0.05. After associating gene symbols with antibodies, we then extracted records that 

corresponded to miR-gene (i.e. miR-antibody) pairs that were supported by functional validation 

publications reported by MiRTarBase v4.5 (Hsu et al., 2014), for stronger (e.g. luciferase 

reporter, Western blot) vs. weaker (e.g. microarray, sequencing, immunoblot, qRT-PCR, 

proteomics, CLASH) experimental evidence types. We also extracted records that 

corresponded to miR-gene (i.e. miR-antibody) pairs in TargetScan v6.2 (Grimson et al., 2007) 

conserved and nonconserved predicted targeting relationships.  

To generate functional insight from the miR-antibody anticorrelations, we considered only miRs 

that were differentially abundant (FDR<0.05) between each molecular subtype and all other 

samples. For these miRs, we extracted the miR-antibody anticorrelation records that were 

supported by functional validation publications with strong evidence types. This generated a list 

of miRs and associated antibodies, for which we generated plots of normalized abundance 

across the molecular subtypes. We identified the subset of these antibodies whose abundance 

varied significantly between molecular subtypes by using R v3.1.2 to calculate BH-corrected P-

values for Wilcoxon and KS tests, for all samples in each subtype, against all other tumor 

samples (n=255). Finally, we manually assessed antibodies with significant differences in 

abundance between subtypes, miR abundance distributions, and significant miR-antibody 

anticorrelations, identifying miRs and antibodies for which the changes in RPM abundance 

distributions of potentially targeting miRs were complementary to the protein abundance 

changes across subtypes.   

b) Results 

Unsupervised clustering  For RPM abundance profiles for 293 tumor samples, rank survey 

profiles for cophenetic correlation coefficient and average silhouette width suggested 4- and 7-

group (cluster) solutions (Figure S9). Here, we show the 4-group solution, since covariate 

associations did not strongly recommend the 7-group solution over the 4 (data not shown), and 

because this solution had a number of significant associations with clinical parameters or other 

molecular results. For example, groups 3 and 4 were enriched in astrocytoma samples (Fisher 

exact P=3.3e-5, Figure S1c), IDHwt samples (P=1.2e-12), mRNAseq cluster 2 (P=5.6e-17), 

DNA methylation cluster K4 (P=3.1e-11), and sCNA cluster 3 (P=4.8e-9). Cluster 3 was 

enriched in RPPA cluster 3 (P=5.2e-9).  
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Group 2 was large (n=184), and many of its discriminatory miRs were relatively less abundant. 

Group 1 was intermediate in size (n=69), and many of its discriminatory miRs were relatively 

abundant. Groups 3 and 4 were small (n=17, 23 respectively). Visually, the normalized 

abundance heatmap suggested a reasonably high level of sample heterogeneity. Tumor purity 

was lowest in group 1, intermediate in group 3, and highest in groups 2 and 4 (Figure S9).  

Kaplan-Meier plots showed statistically significant overall differences in overall survival (OS) 

and progression-free survival (PFS) (log-rank P-values were 4.3e-6 and 0.0054 respectively). Of 

the four groups, group 2 had the most favorable OS and PFS, group 1 was intermediate, and 

groups 3 and 4 had the least favorable outcomes (Figure S9e).  

The heatmap (Figure S9b) shows the 37 miRNA 5p and 3p strands that had relatively high 

cores in the NMF metagene matrix; i.e. miRs that were more discriminatory in unsupervised 

clustering (Gaujoux and Seoighe, 2010). A number of these have been reported for glioma or 

GBM and have been the subject of reviews (Brower et al., 2014; Karsy et al., 2012; Nikaki et al., 

2012; Palumbo et al., 2014): miR-9 (proliferation, self-renewal), miR-10a/b (apoptosis, 

autophagy, chemoresistance, invasion, prognosis, proliferation, senescence, tumor growth), 

miR-21 (apoptosis, chemoresistance, invasion, proliferation, tumor growth), miR-101 (invasion, 

neoangiogenesis, proliferation, tumor growth), miR-128 (proliferation, self-renewal, tumor 

growth), miR-181a (apoptosis, colony formation, invasion, proliferation, radiosensitivity) and let-

7a (migration, proliferation).  

As noted, groups 3 and 4 were enriched in IDHwt samples (Fisher exact P=1.2e-12). Groups 1, 

3 and 4 were depleted in IDHmut-codel, while group 2 was enriched in this subtype (P=5.2e-4). 

The IDHmut-non-codel subtype was marginally enriched in group 2 (P=0.048).  

miRs and molecular subtypes  We identified miRs that were differentially abundant (DA) 

between the three molecular subtypes, using two-class analyses for each subtype vs. all other 

samples, and then for pairs of subtypes (Figure S10b-g, Table S8). We noted that many of 

these miRs are known to be either relatively abundant, or depleted, in gliomas and/or 

glioblastoma (GBM), relative to noncancerous tissues or cell lines, and to be involved in glioma 

oncogenesis or progression (Brower et al., 2014; Karsy et al., 2012; Nikaki et al., 2012; 

Palumbo et al., 2014). Such miRs may be influential in differences between molecular subtypes.  
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Considering only the top 15 positive and negative fold changes in Figure S10b-g, the following 

miRs were differentially abundant between subtypes, and are in described in the above reviews 

as relatively abundant in gliomas and/or GBM.  

 Both miR-9-5p and -3p were less abundant in IDHwt than in either IDHmut-codel or IDHmut-

non-codel samples (Figure S10e,f).  

 The 5p mature strands of miR-10a and 10b were more abundant in IDHwt than in IDHmut-

codel (Figure S10f). miR-10a-5p was strongly more abundant in IDHwt than in IDHmut-non-

codel (Figure S10e) or the two IDHmut groups combined (Figure S10b), and less abundant 

in IDHmut-non-codel than in IDHwt combined with IDHmut-codel (Figure S10c). miR-10b-5p 

was more abundant in IDHmut-non-codel than in IDHmut-codel (Figure S10g).  

 miR-17-5p, 19b-3p and 20a-5p from the miR-17~92a genomic cluster (Tan et al., 2014) 

were less abundant in IDHwt than in IDHmut-non-codel (Figure S10e). miR-20a-5p was 

more abundant in IDHmut-codel than in IDHwt (Figure S10f). miR-17-5p may be influential in 

targeting p21/CDKN1A (below). 

 miR-21-5p and 3p were more abundant in IDHwt than in IDHmut-codel, or the two IDHmut 

subtypes combined (Figure S10f,b), and both strands were more abundant in IDHmut-non-

codel than in IDHmut-codel (Figure S10g). miR-21-5p, with miR-23a-3p, may be influential in 

targeting PTEN (below). 

 miR-155-5p (Ling et al., 2013; Liu et al., 2014; Sun et al., 2014; Zhou et al., 2013) was more 

abundant in IDHwt than in either IDHmut subtype (Figure S10e,f). 

 The 5p strands of miR-182 (Song et al., 2012; Tang et al., 2014)and miR-183 from the miR-

183/96/182 genomic cluster were less abundant in IDHwt than in IDHmut-non-codel (Figure 

S10e) or IDHmut-codel samples (Figure S10f).  

 miR-196b-5p was strongly more abundant in IDHwt than in the two IDHmut subtypes 

combined (Figure S10b).  

 miR-221-3p (Quintavalle et al., 2013) was more abundant in IDHwt than in IDHmut-non-

codel (Figure S10e) or IDHmut-codel (Figure S10f). miR-221-3p may be influential in 

targeting HER3 and ER-alpha (below). 
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In contrast, the following differentially abundant miRNAs are described in reviews as relatively 

depleted in gliomas and GBM.  

 miR-124-3p (An et al., 2013; Chen et al., 2014; Lv and Yang, 2013) was more abundant in 

IDHmut-codel than in IDHmut-non-codel (Figure S10g), and less abundant in IDHmut-non-

codel than in IDHwt + IDHmut-non-codel combined (Figure S10c).  

 miR-146b-5p (Li et al., 2013) and 3p were more abundant in IDHwt than in IDHmut-non-

codel (Figure S10e) or IDHmut-codel (Figure S10f).  

 Two miR-181 family members were differentially abundant. miR-181a-2-3p was less 

abundant in IDHwt than in IDHmut-codel (Figure S10f) or the two IDHmut groups combined 

(Figure S10b). miR-181c-3p was more abundant in IDHmut-non-codel than in the other two 

subtypes combined (Figure S10c). Both miR-181a-2-3p and 181c-5p were less abundant in 

IDHwt than in IDHmut-non-codel (Figure S10e). 

We also noted a number of differentially abundant miRs that were not listed in the above 

reviews, but have been reported for glioma or GBM. 

 miR-23a-3p (Hu et al., 2013; Koshkin et al., 2014; Tan et al., 2012) was more abundant in 

IDHwt than in the two IDHmut groups combined (Figure S10b), and more abundant in 

IDHmut-non-codel than in IDHmut-codel (Figure S10g). miR-23a-3p, with miR-21-5p, may 

be influential in targeting PTEN (below). 

 miR-99a-5p (Chakrabarti et al., 2013; Parker et al., 2013) was more abundant in IDHmut-

non-codel than in IDHmut-codel (Figure S10g) or IDHmut-codel and IDHwt combined 

(Figure S10c).  

 The glioma tumor suppressor miR-143-3p (Wang et al., 2014) was more abundant in IDHwt 

(Figure S10e) and in IDHmut-codel (Figure S10g) than in IDHmut-non-codel. 

 miR-148a-3p is relatively abundant in human glioblastoma specimens, cell lines, and stem 

cells (Kim et al., 2014). It was more abundant in IDHwt than in IDHmut-codel (Figure S10f) 

or the two IDHmut subtypes combined (Figure S10b), and less abundant in IDHmut-codel 

than in the other two subtypes combined (Figure S10d).  

 miR-204-5p (Mao et al., 2014; Ying et al., 2013) was more abundant in IDHwt than in 

IDHmut-non-codel (Figure S10e) or IDHmut-codel (Figure S10f), and was strongly less 

abundant in IDHmut-codel than in the other two subtypes combined (Figure S10d).  

miR targeting and the proteome  We assessed potential miR targeting through Spearman 

correlations between normalized abundance profiles for miRNA mature strands and RPPA 
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protein data for 189 antibodies, for 255 of the 293 tumor samples. Of 17277 significant anti-

correlations (FDR<0.05, Table S9, tab 1), 77 miR-antibody pairs corresponding to 36 antibodies 

were supported by functional validation publications with stronger evidence types (Methods, 

Figure S10h), and 128 miR-antibody pairs corresponding to 70 antibodies were supported by 

functional validation publications with weaker evidence types (Table S9, tabs 2 and 3). Target 

predictions from TargetScan v6.2 returned 155 conserved and 920 nonconserved miR-antibody 

pairs that corresponded to 52 and 102 antibodies respectively (Table S9, tabs 4 and 5).  

To generate functional insight from these miR-protein anticorrelations, we assessed miRs that 

were differentially abundant (FDR<0.05) between the molecular subtypes, and that were 

anticorrelated to antibodies (FDR<0.05) in potential targeting relationships that had been 

functionally validated with stronger evidence types. We anticipated that a subset of these 

relationships could identify miRs that may influence differences in protein levels between the 

molecular subtypes. This process identified 26 miRs and 22 antibodies (Figures S10i and j, 

Table S9, tabs 6 to 8). A number of the antibodies had statistically significant differences in 

abundance between molecular subtypes (Figure S10i, Table S9, tab 9), and we noted a number 

of miR-antibody pairs for which the changes in abundance distributions of the potentially 

targeting miRs were complementary to the protein abundance changes across the subtypes 

(Figure S10k).  For example, PTEN levels, which are progressively lower as we consider 

IDHmut-codel, IDHmut-non-codel and then IDHwt samples, may be influenced by miR-21-5p 

and miR-23a-3p (Figure S10k-i). p21 (CDKN1A) levels may be influenced by miR-17-5p, which 

is expressed from the oncogenic miR-17~92a genomic cluster (Tan et al., 2014) (Figure S10k-

ii). Low levels of HER3 and ER-alpha in IDHwt samples may be influenced by levels of miR-22-

3p and miR-221-3p (Figure S10k-iii). We noted above that miR-21-5p, miR-23a-3p, miR-17-5p 

and miR-221-3p are known to be involved in gliomas (see above reviews); in contrast, while 

miR-22 is associated with diverse cancers (Wan et al., 2014), to our knowledge it has not been 

reported as associated with glioma. 

7 Genome wide DNA methylation profiling 

To this section was contributed by: Houtan Noushmehr, Thais S. Sabedot, Simon G. 

Coetzee, Daniel J. Weisenberger, Toshi Hinoue, Hui Shen, Peter W. Laird 

Correspondence and questions should be directed to: Houtan Noushmehr 

(houtan@usp.br), Peter W. Laird (plaird@usc.edu) 
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a) DNA methylation analysis 

DNA Methylation cluster identification was performed as previously described (Cancer Genome 

Atlas Research, 2014). In short, we used the Illumina Infinium HumanMethylation450 (HM450) 

platform (Illumina, San Diego, CA) to obtain DNA methylation profiles of 289 TCGA lower grade 

glioma samples. We also obtained 77 non-tumor brain samples from Gene Expression Omnibus 

(GEO)(Guintivano et al., 2013), profiled using HM450. This platform covers 99% of RefSeq 

genes with multiple probes per gene, 96% of CpG islands from the UCSC database and their 

flanking regions. The DNA methylation score for each locus is presented as a beta (β) value (β 

= (M/(M+U)) in which M and U indicate the mean methylated and unmethylated signal 

intensities for each locus, respectively. β-values range from zero to one, with scores of zero 

indicating no DNA methylation and scores of one indicating complete DNA methylation. A 

detection P value also accompanies each data point and compares the signal intensity 

difference between the analytical probes and a set of negative control probes on the array. Any 

data point with a corresponding P value greater than 0.01 is deemed not to be statistically 

significantly different from background and is thus masked as “NA” in TCGA level 3 data 

packages, as detailed below. Further details on the Illumina Infinium HM450 DNA methylation 

assay technology has been described previously. The assay probe sequences and information 

on each interrogated CpG/CpH site on the Infinium HM450 BeadChip are available from 

Illumina (www.illumina.com).  

The data levels and the files contained in each data level package are described below and are 

present on the TCGA Data Portal website (http://tcga-data.nci.nih.gov/tcga/) and the publication 

page (https://tcga-data.nci.nih.gov/docs/publications/lgg_2015/).  

Please note that as continuing updates of genomic databases and data archive revisions 

frequently become available, the data packages on TCGA Data Portal are updated accordingly. 

Level 1: Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system. 

Level 2: Level 2 data contain background-corrected methylated (M) and unmethylated (U) 

summary intensities as extracted by the methylumi R package. Non-detection probabilities (P 

values) were computed as the minimum of the two values (one per allele) for the empirical 

cumulative density function of the negative control probes in the appropriate color channel. 

Background correction is performed via normal-exponential deconvolution (currently not 

stratified by probe sequence). Multiple-batch archives have the intensities in each of the two 

channels multiplicatively scaled to match a reference sample (sample with R/G ratio closest to 

1.0). Level 3: Level 3 data contain β-value calculations with HGNC gene symbol, chromosome 
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(UCSC hg19, Feb 2009), and genomic coordinate (UCSC hg19, Feb 2009) for each targeted 

CpG/CpH site on the array. Probes having a common SNP (MAF > 0.01, per dbSNP build 135 

via the UCSC snp135common track) within 10bp of the interrogated CpG site or having 15bp 

from the interrogated CpG site overlap with a repetitive element (as defined by RepeatMasker 

and Tandem Repeat Finder Masks based on UCSC hg19, Feb 2009) are masked as “NA” 

across all samples, and probes with a non-detection probability (P value) greater than 0.01 in a 

given sample are masked as “NA” on that chip. Probes that are mapped to multiple sites on 

hg19 are annotated as “NA” for chromosome and 0 for CpG/CpH coordinate.  

b) Unsupervised clustering analysis of DNA methylation data  

Methods were used as recently described (Cancer Genome Atlas Research, 2014) and is 

provided here as reference, with slight modifications to the total numbers. We used the Level 3 

DNA methylation data contained in the packages listed above for analyses. We first removed 

probes which had any “NA”-masked data points and probes that were designed for sequences 

on X and Y chromosomes. To capture cancer-specific DNA hypermethylation events, we further 

eliminated sites that were methylated (mean β-value ≥0.2) in histologically normal brain tissues. 

However, a clustering analysis can be strongly confounded by the purity of tumor samples. To 

alleviate the potential influence of variable levels of tumor purity in our sample set on our 

clustering result, we dichotomized the data using a β-value of >0.3 as a threshold for positive 

DNA methylation. We then performed unsupervised consensus clustering on 11,977 CpG sites 

with this threshold that are methylated in at least 10% of the tumors using a binary distance 

metric for clustering and Ward’s method for linkage. The cluster assignments were generated by 

evaluating the reports generated by consensus clustering.  The probes are arranged based on 

the order of unsupervised hierarchal clustering of the DNA methylation β-value data. We 

performed Fisher’s exact tests to quantify associations between mutations and clustering 

assignments results. To identify probes that show significant DNA methylation differences 

between the hypermethylated subgroup (M1; n= 12) and all the other groups we performed 

Wilcoxon rank-sum test on β-values across all loci after “NA”-masked and sex-linked probes are 

eliminated (n = 380,836). The resulting P values were corrected using the Benjamini-Hochberg 

procedure.  

Others Statistical analysis and data visualization were carried out using the R/Biocoductor 

software packages (http://www.bioconductor.org).  
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8 Protein expression using Reverse Phase Protein Arrays 

To this section was contributed by: Rehan Akbani, Wenbin Liu, Zhenlin Ju, Yiling Lu, Gordon 

B.Mills 

Correspondence and questions should be directed to: Rehan Akbani 

(rakbani@mdanderson.org) and Gordon B. Mills (gbmills@mdanderson.org). 

a) RPPA experiments and data processing 

Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 

150 mmol/L NaCl, 1.5 mmol/L MgCl2, 1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 

10% glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 

ug/mL) from human tumors and RPPA was performed as described previously (Hennessy et al., 

2007; Hu et al., 2007; Liang et al., 2007; Tibes et al., 2006). Lysis buffer was used to lyse frozen 

tumors by Precellys homogenization. Tumor lysates were adjusted to 1 µg/µL concentration as 

assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor lysates were 

manually serial diluted in two-fold of 5 dilutions with lysis buffer. An Aushon Biosystems 2470 

arrayer (Burlington, MA) printed 1,056 samples on nitrocellulose-coated slides (Grace Bio-

Labs). Slides were probed with 189 validated primary antibodies followed by corresponding 

secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-Goat IgG). 

Signal was captured using a DakoCytomation-catalyzed system and DAB colorimetric reaction. 

Slides were scanned in CanoScan 9000F. Spot intensities were analyzed and quantified using 

Microvigene software (VigeneTech Inc., Carlisle, MA), to generate spot signal intensities (Level 

1 data). The software SuperCurveGUI (Hu et al., 2007) available at 

http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 

values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve ("supercurve") 

was plotted with the signal intensities on the Y-axis and the relative log2 concentration of each 

protein on the X-axis using the non-parametric, monotone increasing B-spline model (Tibes et 

al., 2006). During the process, the raw spot intensity data were adjusted to correct spatial bias 

before model fitting. A QC metric was returned for each slide to help determine the quality of the 

slide: if the score is less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the 

staining was repeated to obtain a high quality score. If more than one slide was stained for an 

antibody, the slide with the highest QC score was used for analysis (Level 2 data). Protein 

measurements were corrected for loading as described (Gonzalez-Angulo et al., 2011; Hu et al., 

2007) using median centering across antibodies (level 3 data). In total, 189 antibodies and 255 
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samples were used. Final selection of antibodies was also driven by the availability of high 

quality antibodies that consistently pass a strict validation process as previously described 

(Hennessy et al., 2010). These antibodies are assessed for specificity, quantification and 

sensitivity (dynamic range) in their application for protein extracts from cultured cells or tumor 

tissue. Antibodies are labeled as validated and use with caution based on degree of validation 

by criteria previously described (Hennessy et al., 2010).  

Two RPPA arrays were quantitated and processed (including normalization and load controlling) 

as described previously, using MicroVigene (VigeneTech, Inc., Carlisle, MA) and the R package 

SuperCurve (version-1.3), available at http://bioinformatics.mdanderson.org/OOMPA (Hu et al., 

2007; Tibes et al., 2006). Raw data (level 1), SuperCurve nonparameteric model fitting on a 

single array (level 2), and loading corrected data (level 3) were deposited at the DCC. 

b) Data normalization 

We performed median centering across all the antibodies for each sample to correct for sample 

loading differences. Those differences arise because protein concentrations are not uniformly 

distributed per unit volume. That may be due to several factors, such as differences in protein 

concentrations of large and small cells, differences in the amount of proteins per cell, or 

heterogeneity of the cells comprising the samples. By observing the expression levels across 

many different proteins in a sample, we can estimate differences in the total amount of protein in 

that sample vs. other samples. Subtracting the median protein expression level forces the 

median value to become zero, allowing us to compare protein expressions across samples. 

c) Hierarchical clustering 

We used bootstrap to resample (N=3000) the proteins to estimate the number of sample 

clusters. Pearson correlation was used as distance metric and Ward was used as a linkage 

algorithm in the unsupervised hierarchical clustering analysis. This method clustered the 

samples and counted how frequently two samples were in the same cluster (Figure S20A).The 

bootstrap resampling analysis identified four robust sample clusters (Figure S20B). The four 

clusters and their protein expression patterns can be viewed through the next generation 

clustered heat map (NG-CHM) pipeline developed at the University of Texas MD Anderson 

Cancer Center. A total of 255 samples and 189 antibodies were used in the analysis. The 

analysis showed an interesting cluster (third from the right in Figure S20B) that had depletions 
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in IDH mutations along with enrichment in EGFR and PTEN mutations. The PTEN mutations 

corresponded with decreased PTEN protein levels, whereas EGFR mutations tended to 

increase protein expression (Figure S20C) creating possibilities for clinically targeting EGFR. 

Interestingly, the same cluster also had high levels of HER2, further increasing the chances for 

targeted therapy. The first cluster from the right, on the other hand, had high PTEN, BRAF, and 

MEK1 levels. The second cluster had high Beta Catenin, ERK2, PKC alpha, phosphoPKC alpha 

and PKC delta protein levels. The last cluster showed depletion of all of those proteins. Clusters 

1, 2 and 4 all showed enrichment of IDH, TP53, and ATRX mutants and had many grade II 

tumors. Cluster 3 was depleted in all of those features, and had poor overall survival and 

progression free survival (Figure S20D). 

9 Miscellaneous Analysis 

To this section was contributed by: Mia Grifford, Olena Morozova, Sam Ng, Dan Carlin, Josh 

Stuart, Sofie Salama, David Haussler 

Correspondence and questions should be directed to: Sofie Salama 

(ssalama@soe.ucsc.edu) 

a) Cluster of clusters analysis 

Cluster of clusters analysis was performed as previously described (Cancer Genome Atlas, 

2012). Briefly, subtype calls from each of the following 4 platforms: mRNA, miRNA, methylation, 

and copy number were used to identify relationships between the different data type’s 

classifications. Subtypes defined from each platform were coded into a series of indicator 

variables, resulting in a matrix of 1s and 0s. Hierarchical clustering of this matrix was performed 

using the ConsensusClusterPlus R-package (Monti et al., 2003; Wilkerson and Hayes, 2010). 

Parameters for ConsensusClusterPlus were 80% sample resampling with 1000 iterations of 

hierarchical clustering based on a Pearson correlation distance metric. Cluster assignments 

were determined for different total numbers of clusters ranging from 2 to 7. The best total 

number of clusters was determined to be 3 based on the cumulative distribution functions, 

cophenetic correlation coefficients and average silhouette widths (Figure S23). 

b) Comparative analysis of IDHwt LGGs and GBMs  

Figure 5A was generated using the UCSC Cancer Genomics Browser (Goldman et al., 2013) 

chromosome view of the TCGA LGG GISTIC thresholded copy number dataset. Samples were 

grouped based on the IDH mutation and 1p/19q co-deletion status into 3 subtypes (IDHwt, 
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IDHmut-codel and IDHmut-non-codel) and then sub-grouped based on tumor grade. 

Percentages of copy number events in LGGs are based on the CNV arm-level calls (See Copy 

Number Analysis Methods). Copy number calls indicate predicted hemizygous amplifications or 

deletions. The percentages of corresponding arm-level CNV alterations in GBMs are based on 

GISTIC thresholded arm-level calls (Brennan et al., 2013). Percentages of double minute 

chromosomes/homogenously staining regions are based on predictions made from exome data 

(See exome analysis to identify candidate double minute chromosomes in methods). 

Mutation calls in Figure 5B were obtained from the cross-center combined MAF file, which 

included mutations in the 285 samples analyzed using whole exome sequencing. Copy number 

alterations in Figure 5B were obtained from the GISTIC thresholded gene-level analysis, and 

included gene-level copy number events in the 266 samples with copy number data. A gene 

was considered to be amplified if the GISTIC thresholded value was 2 and deleted if it was -2. 

High confidence DNA rearrangements identified using BamBam (Sanborn et al., 2013) and 

BreakDancer (Chen et al., 2009) and listed in Table S5 were also included in Figure 5B and 

denoted “SV”. Manually reviewed fusion predictions (Table S6) affecting genes in Figure 5B 

were also included. Samples were divided into 3 subtypes based on the IDH mutation and 

1p/19q co-deletion status, as described above. Mutation, amplification, deletion, structural 

variant (SV) and fusion frequencies in TCGA GBM samples were as previously published 

(Brennan et al., 2013). IDH mutation status in TCGA GBM samples was available for 423 

patients, determined either by whole-exome Illumina sequencing or Sanger-based sequencing 

(Cibulskis et al., 2013). 

c) Analysis of NOTCH1 mutation and fusion signaling consequences 

  
As NOTCH1 appears to be a highly recurrent mutation identified in the IDHmut-codel subgroup 

we investigated the pathway evidence for loss-of-function, gain-of-function, or neutrality of 

specific mutations in this gene across the LGG cohort. To do this, we employed the 

PARADIGM-SHIFT algorithm (Ng et al., 2012). PARADIGM-SHIFT assigns a pathway impact 

score for each mutation. Along with mutations in NOTCH1, we also analyzed one homozygous 

deletion, one genomic rearrangement, and two fusion events in NOTCH1. Thus, pathway 

signatures identified by PARADIGM-SHIFT shared with the NOTCH1 mutations could provide 

clues about the mechanism of action of these genomic events. There were 246 samples within 

the IDH mutant and wild-type subtypes and 1 sample that was not assigned a subtype 

(NOTCH1 fusion) with available genomic data to run PARADIGM-SHIFT analysis, with 29 
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NOTCH1 mutations, one homozygous deletion, one genomic rearrangement, and two fusions in 

this set. PARADIGM parameters were trained on the complete cohort of samples with available 

copy number and expression data with a total of 272 samples. The NOTCH1 mutation 

neighborhoods were selected in a supervised fashion by selecting features based on Fisher 

score. PARADIGM-SHIFT (P-Shift) scores for NOTCH1, which reflect the discrepancy in 

upstream versus downstream pathway signals, were calculated as the difference in inferred 

activity between the two runs of PARADIGM; one where only the connections with the upstream 

regulators are retained (R-run) and one where only the connections with the downstream 

targets are retained (T-run). When the distribution of P-Shift scores for samples with alterations 

in NOTCH1 are compared to samples without either of these alterations, an enrichment of 

negative P-Shift scores was identified indicating loss-of-function (LOF) on average through the 

NOTCH1 signaling pathway. The significance of this aggregated LOF score was determined by 

running a background model in which the selected network topology is fixed, but the data is 

permuted, thus assigning random genes to the surrounding network neighborhood of the 

NOTCH1 protein. Under this background model, the LOF aggregated score was found to have a 

p-value of 0.02. Altogether, these findings suggest that the signaling consequences of NOTCH1 

genomic events in LGG lead to LOF based on the discrepancy of up- vs. down- stream activity 

signals. PARADIGM-SHIFT was run on the complete cohort to determine the functional impact 

of alterations on the network and its network was viewed with a CircleMap display (Figure 

S16)(Wong et al., 2013). The pattern of expression for many of the downstream targets of 

NOTCH1 mirrors the profile of P-Shift score concordant with NOTCH1 pathway deactivation in 

the samples with alterations. Low P-Shift scores are also observed in many of the other 

samples within the IDHmut-codel subtype, which suggests there may be additional mechanisms 

of NOTCH signaling pathway deactivation not considered in this analysis. 

10  Batch Effects 

To this section was contributed by: Rehan Akbani, Shiyun Ling, John N. Weinstein 

Correspondence and questions should be directed to: Rehan Akbani 

(rakbani@mdanderson.org) 

a) Methods 

We used hierarchical clustering and Principal Components Analysis (PCA) to assess batch 

effects in the low grade glioma data sets. Four different data sets were analyzed: miRNA 



 41

sequencing (Illumina HiSeq), DNA methylation (Infinium HM450 microarray), mRNA sequencing 

(Illumina HiSeq), and protein expression (reverse-phase protein arrays). All of the data sets 

were at TCGA level 3, since this represents the level on which most analyses are based. We 

assessed batch effects with respect to two variables; batch ID and Tissue Source Site (TSS). 

Detailed results and batch effects analysis of those and other TCGA data sets can be found at: 

http://bioinformatics.mdanderson.org/tcgabatcheffects.  

For hierarchical clustering, we used the average linkage algorithm with 1 minus the Pearson 

correlation coefficient as the dissimilarity measure. We clustered the samples and then 

annotated them with colored bars at the bottom. Each color corresponded to a batch ID or a 

TSS. For PCA, we plotted the first four principal components, but only plots of the first two 

components are shown here. To visually assess batch effects, we enhanced the traditional PCA 

plot with centroids. Points representing samples with the same batch ID (or TSS) were 

connected to the batch centroid by lines.Centroids were computed by taking the mean across all 

samples in the batch. This produced a visual representation of the relationships among batch 

centroids and the scatter within batches. Results for the four data sets follow. 

b) miRNA (Illumina HiSeq) 

Figures S24A-C show clustering and PCA plots for miRNA seq data. miRNAs with zero values 

were removed and the read counts were log2-transformed before generating the figures. Figure 

S24A shows some batch effects in batch numbers 78 and 112. However, as seen from Figure 

S24B, the magnitude of batch effects was not substantial and did not warrant batch effects 

correction for the type of analyses. Batch effects correction algorithms may lead to loss of 

important biological variation in the data, along with the technical variation. 

c) DNA Methylation (Infinium HM450 microarray) 

Figures S24D-F show clustering and PCA plots for the Infinium DNA methylation platform. None 

of the batches or tissue source sites stood apart from the others, indicating no serious batch 

effects were present. 

d)  RNASeqV2 (RNA-Seq Illumina HiSeq) 

Figures S24G-I show clustering and PCA plots for the RNA-seq platform. Genes with zero 

values were removed and the values were log2-transformed before generating the figures. 

None of the batches or tissue source sites stood apart from the others, indicating no serious 

batch effects were present. 
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e)  Protein expression (Reverse-Phase Protein Array – RPPA) 

Figures S24J-K show clustering and PCA plots for protein expression data using the RPPA 

platform. None of the batches or tissue source sites stood apart from the others, indicating no 

serious batch effects were present. 

f) Conclusions 

Batch effects were analyzed in four different data sets. miRNA data showed a small batch effect 

in batch numbers 78 and 112. These weren’t considered strong enough to warrant algorithmic 

batch effect correction, since that often removes useful biology along with batch effects. DNA 

methylation, mRNA and protein expression data didn’t show major batch effects. 
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Figure S1A. Unsupervised consensus clustering of DNA methylation TCGA LGG data. Unsupervised consensus clustering was 
performed using 11,977 Infinium HM450 DNA methylation probes whose DNA methylation beta values were defined as tumor specific. 
DNA Methylation clusters are distinguished with a color code at the bottom of the panel. Each sample within each DNA Methylation 
cluster are color-labeled as described in the key for its gene expression, copy number, miRNA, RPPA and OncoSign cluster. Somatic 
mutation status of genes enriched within one or more clusters are indicated by black squares; gray squares indicate absence of 
mutations; and white squares indicate that the gene was not screened in the sample. Each row represents a probe; each column 
represents a sample. The level of DNA methylation (beta value) for each probe, in each sample, is represented by using a color scale 
as shown in the legend; white indicates missing data. Non-tumor brain samples profiled using the same platform were downloaded and 
used in this study (n=77). The non-tumor brain samples did not contribute to the unsupervised clustering.

Back to Table of Contents



Figure S1B/C. Scatter plots of HM450 probes between the average beta-values for all 289 
TCGA LGG samples (y-axis) vs 77 non-tumor brain samples (x-axis).  Boxplots and frequency 
distribution are shown on each axes to illustrate the overall distribution of the data.  Colors are 
shown to highlight the distribution of the data.  Grey indicates low density, while orange 
indicates high density.  B. Shows all the data. C. filtered data, showing only the tumor specific 
probes (non-tumor brain beta values <=0.2).
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Figure S1D/E. Distribution of purity and ploidy counts by DNA methylation clusters. D. 
distribution of purity values by clusters. E. Distribution of ploidy by clusters.
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Figure S2A. Correlation plots showing beta values for more than 300,000 probes averaged for 
non-tumor, cluster 1-5.  The top right panel shows the scatter plots while the lower left panel 
shows the correlation values by rho.  
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Figure S2B. Volcano plot between cluster 1 and non-tumor brain samples. X-axis is the 
beta value difference. Y-axis is –log10 of the FDR values. Colors indicate significantly different
(p<0.05; |beta value difference| > 0.2).
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Figure S3A. Clinical features describing each clusters.  Age at diagnosis distribution by 
clusters. Y-axis indicates age at diagnosis.  Clusters are colored and each spot indicates a 
sample. 
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Figure S3B. Clinical features describing each clusters. Histogram of 6 different clinical features 
found to be enriched for one or more cluster. Legend on the right is provided to aid in the 
distribution. Y-axis is percent total, x-axis is by cluster.
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DC

Figure S3C/D. Kaplan-meier survival curves by cluster distribution. Y-axis is percent 
probability of survival; x-axis is years (time since diagnosis). C, Overall survival. D, 
Progression free survival.
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Figure S4. Somatic alterations associated with one or more DNA methylation cluster. Black 
indicates mutation and grey indicates wildtype. Y-axis is percent total and x-axis is cluster membership. 
Each panel highlights a specific gene mutation. Panels are labeled by gene name.
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Figure S5. Histogram distribution of IDH1/2 mutation and 1p19q deletion status by clusters. 
Y- axis is percent total. X-axis is cluster membership.
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Figure S6. mRNA expression based clustering. A) Consensus clustering at K=6 using 1500 genes. B) CDF 
plot for K2-K10. C) Silhouette widths of the 4 RNA subtypes. D) Overall Survival for “core” RNA subtype 
members. E) Heatmap of the 100 most highly expressed genes per subtype. Samples are ordered according 
to the clustering in Figure S7.
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Figure S7. Genomic associations of mRNA expression clusters. A) 239 “core” RNA-seq samples were 
clustered using the 1500 most variably expressed genes. Single sample gene set enrichment (ssGSEA) 
was performed using the astrocytoma subtype signatures previously defined (Gorovets et al., 2012). B) 
ssGSEA using the neural ontology signatures previously defined (Cahoy et al., 2008). C) GBM 
transcriptional subtypes have been previously described (Verhaak et al, 2010). D) Genomic events that 
were significantly associated with RNA subtype (see CustomEvents comparison at : 
http://gdac.broadinstitute.org/runs/awg_lgg__2013_10_28/reports/). Abbreviations: A, astrocytoma; OA, 
oligoastrocytoma; O, oligodendroglioma; PN, proneural; N, neural; CL, classical MES, mesenchymal; PG, 
preglioblastoma; NB, neuroblastic; EPL, early progenitor-like.
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Figure S8A. DNA copy number profiles by histology and grade. The heatmap shows DNA copy 
number levels in tumors (horizontal axis) plotted by chromosomal location (vertical axis). Amplified regions 
are colored red, while deleted regions are colored blue. Horizontal side bars show pathological subtypes 
and tumor grades.
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Figure S8B. Copy number based clustering of LGG tumors. Tumors were hierarchical clustered 
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are plotted by chromosomal location (vertical axis). Amplified regions are colored red, while deleted 
regions are colored blue. Horizontal side bars show major copy number cluster groups, molecular 
subtypes and pathological subtypes.
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Figure S9. Unsupervised clustering of miRNA-seq 5p/3p data for 293 tumor samples. a) From the NMF consensus clustering rank 
survey (Gaujoux and Seoighe 2010), the cophenetic correlation coefficient and average silhouette width profiles suggest four- and 
seven-group solutions. The blue/red image shows the consensus membership heatmap for the four-group solution, with yellow-white 
indicating samples that are less ‘typical’ cluster or group members. b) A four-group NMF consensus clustering solution. miR names are 
from miRBase v16. Top to bottom: a normalized abundance heatmap for the 36 5p or 3p strands that were most discriminatory for NMF 
(i.e. miRs with the top 5% of scores in each metagene), with red text highlighting a more discriminatory subset (i.e. miRs with relatively 
high scores in the metagene W matrix); silhouette width profile; ‘atypical’ group members, which are samples whose width is below 0.9 
of the maximum in a group; covariates with Fisher exact P-values; and a summary table of cluster number, number of samples in each 
cluster, and the overall average silhouette width. The scale bar shows log2 normalized abundances (i.e. reads-per-million, RPM) that 
are median-centred for each miR (row) in the heatmap. c) Covariates, as in (b). d) Per-group distributions of tumor sample purity as 
calculated by ABSOLUTE. e) Kaplan-Meier plots for overall survival and progression-free survival, with log-rank P-values.
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Figure S10. Differentially abundant miRs, miR-protein anticorrelations, and miRs that may influence 
protein abundance between subtypes. a-g) miRs that are differentially abundant between subtypes. a) 
Silhouette width profile and molecular subtype covariate tracks from Fig. S1. b,c,d) Comparisons are 
between one molecular subtype and all other samples: b) IDH wild type, c) IDH mutant/non-codeleted, d) 
IDH mutant with a 1p/19q co-deletion. e,f,g) Comparisons between pairs of molecular subtypes. Left: 
median-based fold change, linear scale. Right: Boxplots showing distributions of normalized (RPM) 
abundance, with black vertical lines indicating medians. Up to 15 of the largest fold changes in each 
direction are shown; FDR ≤ 0.05. Because miRs with higher abundance are likely more influential (Tay et al. 
2014), only miRs with a mean abundance of at least 50 RPM are shown (see Tables S8,S9).
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LGG (255 tumours): 77 functionally validated miR-RPPA anticorrelations, FDR<0.05
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Figure S10h. Functionally validated miR-antibody anticorrelations. The network shows 77 miR-antibody 
inverse correlations (FDR<0.05) that are supported by functional validation publications. The correlations 
were calculated for 255 tumor samples from normalized abundance data for miRNA mature strands and 189 
RPPA antibodies.
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Figure S10i. Distribution between molecular subtypes of normalized abundance for 22 antibodies. These antibodies were 
anticorrelated to miRs that were differentially abundant between the three molecular substypes (Fig. S10b-g), and had targeting 
relationships with miRNAs that were supported by published functional validations (Fig. S0h). Asterisks indicate statistical 
significance from BH-corrected KS tests for all samples in each subtype, against all other tumor samples (n=255). For example, 
p21’s abundance distribution was statistically different for IDHmut-non-codel samples (**, i.e. BH-corrected P-value <0.001) and for 
IDHwt samples (*, i.e. BH-P<0.05), but was not statistically different for IDHmut-codel.
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Figure S10j. Distribution between molecular subtypes of normalized (RPM) abundance for 26 miRNA mature strands. These miRs 
were differentially abundant between the three molecular subtypes (Fig. S10b-g), and had targeting relationships with antibodies that were 
supported by published functional validations (Fig. S10h).

Back to Table of Contents



-0 .27

-0 .27

-0 .26

-0 .19

-0 .18

-0 .15
-0 .21

- 0 . 3

-0 .27

-0 .18

-0 .19

-0 .22

-0 .16

-0 .17

- 0 . 2

-0 .24

-0 .21

-0 .15

-0 .22

-0 .17

-0 .22

-0 .17

-0 .18

-0 .15

-0 .19
-0 .22

-0 .16

- 0 . 2

-0 .22
- 0 . 2

-0 .19

-0 .24

-0 .23

-0 .17

-0 .17

-0 .26

-0 .33

-0 .21

-0 .19

-0 .22

-0 .22

-0 .34

-0 .16

-0 .34

-0 .27

-0 .21

-0 .26

-0 .32

- 0 . 2

-0 .18

- 0 . 2

-0 .22

-0 .41

-0 .15

-0 .42 -0 .21

-0 .22

-0 .18 - 0 . 2-0 .19-0 .15-0 .15-0 .15 -0 .16 -0 .23-0 .18-0 .39

-0 .16

- 0 . 2

-0 .34

-0 .33
-0 .16

-0 .24

-0 .28

-0 .23

-0 .23

-0 .18

494-3p

24 -3p

421

32 -5p

Bim-R-V

100-5p

ATM-R-E

134-5p

101-3p EGFR-R-V

7 - 5 p

15b-5p

128-3p

EGFR_pY1068-R-C 

133a-3p200b-3p

451a

181b-5p

VEGFR2-R-V 

Shc_pY317-R-E 

Bcl-2-M-V

Bap1-c-4-M-E 

136-5p

204-5p

29c-3p

29a-3p

34b-5p

18a-5p

181a-5p

29b-3p

26b-5p

Cyclin_E1-M-V 

15a-5p

23a-3p

PTEN-R-V

21 -5p

Cyclin_E2-R-C 

193b-3p

FoxM1-R-V 

200c-3p

200a-3p

PEA15_pS116-R-V 

212-3p137

YB-1_pS102-R-V 

Rictor_pT1135-R-V 

218-5p

Paxillin-R-C 

33a-5p
HER3-R-V

22 -3p

205-5p
Src-M-V

125a-5p

26a-5p

30b-5p 30d-5p

30c-5p

Smad1-R-V 

PEA15-R-V

Rictor-R-C

IRS1-R-V ERK2-R-EPAI-1-M-Ep21-R-Vp53-R-EE-Cadherin-R-V N-Cadherin-R-V PI3K-p110-alpha-R-C Cyclin_B1-R-V AR-R-V

132-3p 148b-3p 17 -5p 320a150-5p145-5p 301a-3p138-5p 148a-3p124-3p

19a-3p

Cyclin_D1-R-V 

19b -1 -5p 149-5p

23b-3p

FOXO3a_pS318_S321-R-C 

222-3p

p27_pT198-R-V 

p27-R-V

ER-alpha-R-V 221-3p
mut−codel mut−non−codel wt

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R
PP

A 
no

rm
al

ize
d 

ab
un

da
nc

e

ER−alpha−R−V

***

mut−codel mut−non−codel wt

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R
PP

A 
no

rm
al

ize
d 

ab
un

da
nc

e

HER3−R−V

** **

mut−codel mut−non−codel wt

0.5

1.0

1.5

2.0

m
iR

 R
PM

 (1
00

0s
)

miR−125a−5p

mut−codel mut−non−codel wt

0

20

40

60

80

100

120

m
iR

 R
PM

 (1
00

0s
)

miR−22−3p

mut−codel mut−non−codel wt

0.0

0.1

0.2

0.3

0.4

0.5

m
iR

 R
PM

 (1
00

0s
)

miR−221−3p

-0 .27

-0 .27

-0 .26

-0 .19

-0 .18

-0 .15
-0 .21

- 0 . 3

-0 .27

-0 .18

-0 .19

-0 .22

-0 .16

-0 .17

- 0 . 2

-0 .24

-0 .21

-0 .15

-0 .22

-0 .17

-0 .22

-0 .17

-0 .18

-0 .15

-0 .19
-0 .22

-0 .16

- 0 . 2

-0 .22
- 0 . 2

-0 .19

-0 .24

-0 .23

-0 .17

-0 .17

-0 .26

-0 .33

-0 .21

-0 .19

-0 .22

-0 .22

-0 .34

-0 .16

-0 .34

-0 .27

-0 .21

-0 .26

-0 .32

- 0 . 2

-0 .18

- 0 . 2

-0 .22

-0 .41

-0 .15

-0 .42 -0 .21

-0 .22

-0 .18 - 0 . 2-0 .19-0 .15-0 .15-0 .15 -0 .16 -0 .23-0 .18-0 .39

-0 .16

- 0 . 2

-0 .34

-0 .33
-0 .16

-0 .24

-0 .28

-0 .23

-0 .23

-0 .18

494-3p

24 -3p

421

32 -5p

Bim-R-V

100-5p

ATM-R-E

134-5p

101-3p EGFR-R-V

7 - 5 p

15b-5p

128-3p

EGFR_pY1068-R-C 

133a-3p200b-3p

451a

181b-5p

VEGFR2-R-V 

Shc_pY317-R-E 

Bcl-2-M-V

Bap1-c-4-M-E 

136-5p

204-5p

29c-3p

29a-3p

34b-5p

18a-5p

181a-5p

29b-3p

26b-5p

Cyclin_E1-M-V 

15a-5p

23a-3p

PTEN-R-V

21 -5p

Cyclin_E2-R-C 

193b-3p

FoxM1-R-V 

200c-3p

200a-3p

PEA15_pS116-R-V 

212-3p137

YB-1_pS102-R-V 

Rictor_pT1135-R-V 

218-5p

Paxillin-R-C 

33a-5p
HER3-R-V

22 -3p

205-5p
Src-M-V

125a-5p

26a-5p

30b-5p 30d-5p

30c-5p

Smad1-R-V 

PEA15-R-V

Rictor-R-C

IRS1-R-V ERK2-R-EPAI-1-M-Ep21-R-Vp53-R-EE-Cadherin-R-V N-Cadherin-R-V PI3K-p110-alpha-R-C Cyclin_B1-R-V AR-R-V

132-3p 148b-3p 17 -5p 320a150-5p145-5p 301a-3p138-5p 148a-3p124-3p

19a-3p

Cyclin_D1-R-V 

19b -1 -5p 149-5p

23b-3p

FOXO3a_pS318_S321-R-C 

222-3p

p27_pT198-R-V 

p27-R-V

ER-alpha-R-V 221-3p

mut−codel mut−non−codel wt

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
iR

 R
PM

 (1
00

0s
)

miR−23a−3p

mut−codel mut−non−codel wt

0

50

100

150

200

250

m
iR

 R
PM

 (1
00

0s
)

miR−21−5p

mut−codel mut−non−codel wt

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R
PP

A 
no

rm
al

ize
d 

ab
un

da
nc

e

PTEN−R−V

* *

not DA between 
subtypes

not DA between 
subtypes

i

iii

mut−codel mut−non−codel wt

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
iR

 R
PM

 (1
00

0s
)

miR−17−5p

mut−codel mut−non−codel wt

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R
PP

A 
no

rm
al

ize
d 

ab
un

da
nc

e

p21−R−V

CDKN1A

** *

-0 .27

-0 .27

-0 .26

-0 .19

-0 .18

-0 .15
-0 .21

- 0 . 3

-0 .27

-0 .18

-0 .19

-0 .22

-0 .16

-0 .17

- 0 . 2

-0 .24

-0 .21

-0 .15

-0 .22

-0 .17

-0 .22

-0 .17

-0 .18

-0 .15

-0 .19
-0 .22

-0 .16

- 0 . 2

-0 .22
- 0 . 2

-0 .19

-0 .24

-0 .23

-0 .17

-0 .17

-0 .26

-0 .33

-0 .21

-0 .19

-0 .22

-0 .22

-0 .34

-0 .16

-0 .34

-0 .27

-0 .21

-0 .26

-0 .32

- 0 . 2

-0 .18

- 0 . 2

-0 .22

-0 .41

-0 .15

-0 .42 -0 .21

-0 .22

-0 .18 - 0 . 2-0 .19-0 .15-0 .15-0 .15 -0 .16 -0 .23-0 .18-0 .39

-0 .16

- 0 . 2

-0 .34

-0 .33
-0 .16

-0 .24

-0 .28

-0 .23

-0 .23

-0 .18

494-3p

24 -3p

421

32 -5p

Bim-R-V

100-5p

ATM-R-E

134-5p

101-3p EGFR-R-V

7 - 5 p

15b-5p

128-3p

EGFR_pY1068-R-C 

133a-3p200b-3p

451a

181b-5p

VEGFR2-R-V 

Shc_pY317-R-E 

Bcl-2-M-V

Bap1-c-4-M-E 

136-5p

204-5p

29c-3p

29a-3p

34b-5p

18a-5p

181a-5p

29b-3p

26b-5p

Cyclin_E1-M-V 

15a-5p

23a-3p

PTEN-R-V

21 -5p

Cyclin_E2-R-C 

193b-3p

FoxM1-R-V 

200c-3p

200a-3p

PEA15_pS116-R-V 

212-3p137

YB-1_pS102-R-V 

Rictor_pT1135-R-V 

218-5p

Paxillin-R-C 

33a-5p
HER3-R-V

22 -3p

205-5p
Src-M-V

125a-5p

26a-5p

30b-5p 30d-5p

30c-5p

Smad1-R-V 

PEA15-R-V

Rictor-R-C

IRS1-R-V ERK2-R-EPAI-1-M-Ep21-R-Vp53-R-EE-Cadherin-R-V N-Cadherin-R-V PI3K-p110-alpha-R-C Cyclin_B1-R-V AR-R-V

132-3p 148b-3p 17 -5p 320a150-5p145-5p 301a-3p138-5p 148a-3p124-3p

19a-3p

Cyclin_D1-R-V 

19b -1 -5p 149-5p

23b-3p

FOXO3a_pS318_S321-R-C 

222-3p

p27_pT198-R-V 

p27-R-V

ER-alpha-R-V 221-3p

ii

***

KS FDR 
< 0.05
< 0.001

k

Figure S10k. miRs that may influence protein abundance across molecular 
subtypes. Examples from the 22 antibodies and 26 miRs from Figures S10h-j. These 
miRs were differentially abundant between the three molecular subtypes, and had 
targeting relationships with RPPA antibodies that were supported by published functional 
validations. i) PTEN, miR-21-5p and miR- 23a-3p. ii) p21 (CDKN1A) and miR-17-5p. iii) 
HER3, miR-22-3p and 125a-5p, and ER-alpha, miR- 22-3p and 221-3p.
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Figure S11A. Distribution of total and non-silent mutation rates stratified by molecular subtype 
based on calls made by MuTect (Broad Institute). Each dot represents the mutation rate for a single 
sample. The median for each set is indicated by a black horizontal bar. Mutation rates in LGG are lower in 
samples with IDH mutation (total rate median,1.3 mutation per Mb for codel and non-codel samples; non-
silent rate median, 1.1 and 1 per Mb for codel and non-codel samples, respectively) than in IDHwt samples 
(median total rate, 1.75 per Mb; non-silent rate, 1.3 per Mb). B. LGG rates are higher than 
medulloblastoma (median rate, 0.35 per Mb) but lower than GBM (median rate, 2 per Mb) and intermediate 
in the spectrum of mutation frequencies for reported TCGA malignancies (median ranges, 0.17 – 13.2 per 
Mb) (data from Lawrence et al, 2013). All p-values calculated with the Wilcoxon rank-sum test.

Back to Table of Contents



Mutation spectra for all samples and differentiated by molecular subtype, based on MuTect calls 
(Broad Institute). Each column represents the mutation rate per Mb of a specific mutation in all samples (A)
or the three molecular subtypes (B-D). Substitution types are separated by color, and position within the grid 
corresponds to mutation context 5’-base - mutated base - 3’ -base as indicated in the legend in panel A.
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Figure S12. Mutation spectra for all samples and differentiated by molecular subtype based on 
MuTect calls (Broad Institute). Each column represents the mutation rate per Mb of a specific mutation in 
all samples (A) or the three molecular subtypes (B-D). Substitution types are separated by color, and position 
within the grid corresponds to mutation context 5’-base - mutated base - 3’ - base as indicated in the legend 
in panel A.
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Figure S13. Distribution of mutations in protein products of significantly mutated genes. 
Each mutation is represented by a filled circle or square. Types of mutations are color-coded as 
indicated in the legend. Back to Table of Contents
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Figure S14A. GISTIC 2.0 analyses of three molecular subtypes. Chromosomal locations of peaks of significantly recurring focal 
amplifications (red) and deletions (blue) are plotted by false discovery rates. Annotated peaks have a FDR < .2 and encompass 125 or 
less genes. Peaks are annotated with candidate driver oncogenes or tumor suppressors or by cytoband. The number of genes within each 
peak are shown next driver gene or cytobands.
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Figure S14B. The UCSC Cancer Genomics Browser view of GISTIC thresholded copy number calls for the 
region of chromosome 9 containing CDKN2A/B. Samples are sorted based on molecular subtype. About 30% of 
IDHmut-non-codel samples have deletions in CDKN2A/B, similar to the 29% of samples with chr 9p deletions shown in 
figure 3a, while only 4% passed the cutoff (-2) used for gene-level calls made in figure 3b.
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Figure S15. Similar distribution of somatic mutation events in Notch1 in LGG and head and 
neck cancer but not in T-ALL patients and cell lines suggests that NOTCH1 mutations in LGG 
are inactivating. HNSC mutation calls were obtained from Lawrence et al, 2014 through 
download from http://cancergenome.broadinstitute.org/. T-ALL mutations are from 
Keersmaecker et al, 2013.
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Figure S16. NOTCH1 mutations are loss of function in LGGs according to PARADIGM- 
SHIFT analysis. PARADIGM-SHIFT analysis of NOTCH1 pathway alterations, NOTCH1 
mutations, fusions, and deletions. Circlemap display of mutation neighborhood selected for 
NOTCH1. Solid lines indicate transcriptional regulation and dashed lines indicate protein 
regulation. Samples were sorted first by the NOTCH1 alteration status (Green: NOTCH1 fusion, 
Black: NOTCH1 mutation, Blue: Homozygous Deletion), then by subtype, and finally by P-Shift 
score.
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Figure S17. Reconstruction of TCGA-CS-5395 circular amplicon. Panel A shows a tumor browser 
view of the region of chromosome 1 containing the DM/HSR. Common features of DMs/HSRs are 
labeled in purple. The bottom track shows protein coding genes within the region. The track above 
shows relative copy number of the tumor DNA compared with normal, showing distinct blocks of 
elevated copy number with similar total copy number between blocks. The top two tracks show intra-
and interchromosomal rearrangement breakpoints. All rearrangements shown are supported by at least 
100 discordant reads. The type of rearrangement is indicated by the color of the line: duplication (red), 
deletion (blue) and inversion (yellow and green). Panel B shows a diagram of the amplified segments 
and structural variants identified on chromosome 1. Walking through this diagram results in a circular 
solution, suggesting the double minute chromosome diagrammed in panel C, where segments inverted 
relative to their orientation in the reference genome are indicated by (–) and colored blue. The letters 
inside the circle correspond to the segments in B. The numbers inside the circle indicate the number of 
sequencing reads supporting each breakpoint. Oncogenes are colored red.
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Figure S18A. Schematic representations of activating receptor tyrosine kinase fusions 
involving EGFR and FGFR3 that were identified in IDHwt LGG tumors. The UCSC Cancer 
Genomics Browser view of exon-level expression for the fusion partners is displayed for each 
fusion-positive patient. The exon-level expression tracks are lined up with the fusion 
breakpoints in each case.
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Figure S18B. Candidate loss of function fusions in ATRX, NOTCH1 and EGFR. The UCSC Cancer 
Genomics Browser view of exon-level expression for the fusion partners is displayed for each 
fusionpositive patient. The exon-level expression tracks are lined up with the fusion breakpoints in 
each case.

Back to Table of Contents



Figure S19. A. Full transcriptome profile of LGG with EGFR-SEPT14 fusion showing expression 
of all transcripts, including predicted EGFR-SEPT14 fusion transcript isoforms (square points) and 
their constituents (larger circular points). Note that predicted fusion transcripts are among the 
highest expressed transcripts in the transcriptome, and that each fusion transcript is expressed 
much more highly than its constituent transcripts. B. Similar to a. for LGG with FGFR3-TACC3 
fusion.  Here, the top two most expressed fusions (green/red square and green/purple square, 
respectively) are expressed much higher than constituents. 
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K = 2 K = 3 K = 4

K = 5 K = 6 K = 7

Figure S20A. Consensus clustering of RPPA data from 255 LGG samples with different values of the 
number of clusters, K (2-7). K=4 was chosen as the most robust number. The third cluster in K=4 is quite 
robust, whereas the others are less robust.
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Figure S20B. The relative total and phosphoprotein expression levels from reverse phase protein array (RPPA) 
analysis. From a cohort of 189 proteins, the 40 proteins shown here were found to be differentially expressed (BH-
adjusted p-value < 1e-5) among the three molecular subtypes. Expression levels of most of the receptor tyrosine 
kinase pathway proteins (highlighted) except phosphoHER3 are significantly elevated in IDHwt LGG compared to 
other subtypes. All of the samples with EGFR amplification or fusion, and most of the samples with EGFR mutation 
showed elevated EGFR expression levels.
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Figure S20C. Unsupervised clustering of 255 LGG samples and 189 proteins shows 4 clusters. Red 
color indicates high protein level, white indicates medium level, and blue indicates low level. The 
third cluster from the left is depleted in IDH mutants and has worse prognosis. Markers for each 
cluster are identified. The last cluster is depleted in markers for the other three. The association of 
clusters with mutations and grade is shown on top of the heatmap with annotation bars. Chi-squared 
P-values were computed for each variable versus the clusters. A zoomed in view can be seen in 
Figure S20D.
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Figure S20D. Zoomed in view of the heatmap shown in Figure S20C. The third cluster has 
EGFR mutations that correlate with high EGFR and phosphoEGFR levels. PTEN mutations 
correlate with low PTEN expression. The cluster also has high HER2 levels, raising 
possibilities for targeted therapies. The P-values in parentheses are based on Student’s t-test.
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Figure S20E. Survival analysis based on RPPA cluster. RPPA Cluster 3 has statistically 
significant shorter overall and progression free survival.
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Figure S21A: Frequencies of mutational events commonly found in IDHwt GBM in 
grade 2 and grade 3 IDHmut-codel LGG. There was no grade information for one 
IDHmut-codel LGG.
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Figure S21B: Frequencies of mutational events commonly found in IDHwt GBM in 
grade 2 and grade 3 IDHmut-non-codel LGG. There was no grade information for 
two IDHmut-non-codel LGGs.
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Figure S21C: Frequencies of mutational events commonly found in IDHwt GBM in 
grade 2 and grade 3 IDHwt LGG. There was no grade information for one IDHwt 
LGG.
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Figure S21D. Spectrum of EGFR alterations in IDHwt LGG and GBMs. Mutation calls in EGFR were obtained 
from the cross-center combined MAF file. Copy number alterations in EGFR were obtained from GISTIC 
thresholded gene-level analysis, and included gene-level copy number. A gene was considered amplified if the 
GISTIC thresholded value was 2 and deleted if it was -2. High confidence DNA rearrangements identified using 
BamBam and BreakDancer and listed in Table S5 were included and denoted “SV”. Manually reviewed fusion 
predictions (Figure 3C, Table S6) affecting EGFR were also shown.
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Figure S21E. Pathway alterations of LGG as a schematic that summarizes genomic alterations 
(mutations, focal amplifications, homozygous deletions and fusions) in LGG across molecular subtypes. 
Canonical RTK/PI3K/MAPK, RB and p53 regulatory pathways are frequently altered, as is telomere 
maintenance.  Alterations with specific pathway components depend strongly on the LGG subtype.
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Figure S22A,B. Estimated survival curves. A. Kaplan-Meier survival curves are drawn for overall 
survival by histopathological type (left) and by WHO grade (right). B. Kaplan-Meier survival curves of 
overall survival by type-grade combinations. Comparisons of the survival curves are tested by log-
rank test for each plot and across type-grade combinations.
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Figure S22C,D. Estimated survival curves. C. Kaplan-Meier survival curves are drawn for progression 
free survival by histopathological type (left) and by WHO grade (right, N=250). D. Kaplan-Meier 
survival curves of progression free survival by type-grade combinations. Comparisons of the survival 
curves are tested by log-rank test for each plot and across type-grade combinations.
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F

Figure S22E,F. Estimated survival curves. E. Kaplan-Meier survival curves are drawn for overall 
survival by IDH/Codel group (N=278). F. Kaplan-Meier survival curves of overall survival by IDH/
Codel-grade combinations. Comparisons of the survival curves are tested by log-rank test for each 
plot and across IDH/Codel-grade combinations.
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Figure S22G,H. Estimated survival curves. G. Kaplan-Meier survival curves are drawn for 
progression-free survival by IDH/Codel group (N=241). F. Kaplan-Meier survival curves of 
progression-free survival by IDH/Codel-grade combinations. Comparisons of the survival curves are 
tested by log-rank test for each plot and across IDH/Codel-grade combinations

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

Progression Free Survival

Years Since Diagnosis

P
ro

po
rt

io
n 

S
ur

vi
vi

ng

IHDmut−codel
IDHmut−non−codel
IDHwt

Log−rank, p<0.0001

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

IDHmut−codel

Years Since Diagnosis

P
ro

po
rt

io
n 

S
ur

vi
vi

ng

Grade 2
Grade 3
Grade 2
Grade 3

Log−rank, p=0.3970

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

IDHmut−non−codel

Years Since Diagnosis

P
ro

po
rt

io
n 

S
ur

vi
vi

ng

Grade 2
Grade 3
Grade 2
Grade 3

Log−rank, p=0.324

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

IDHwt

Years Since Diagnosis

P
ro

po
rt

io
n 

S
ur

vi
vi

ng

Grade 2
Grade 3
Grade 2
Grade 3

Log−rank, p=0.605

Progression Free Survival
Log−rank, p<0.0001

Back to Table of Contents



P
re

di
ct

io
n 

er
ro

r

0 1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Reference
Histology
IDH/Codel
COC

Years since diagnosis (# at risk)

Overall Survival
Unadjusted Cox Regression, BV632

1 3 5

(278) (172) (84) (68) (44) (33)

P
re

di
ct

io
n 

er
ro

r

0 1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Reference
Histology
IDH/Codel
COC

Years since diagnosis (# at risk)

Overall Survival
Age−adjusted Cox Regression, BV632

1 3 5

(278) (172) (84) (68) (44) (33)

Figure S22I. Prediction error curves are plotted for Cox regression models of overall survival using the three 
histology classes (red), the three IDH/Codel classes (green), or the three clusterof- cluster classes (blue) as 
predictors with (right) and without (left) adjustment for age at diagnosis. Error for a model with no predictors 
is given as reference (black). The number of samples at risk at the start of each year are given in the 
horizontal axis labels. Bootstrap resampling (B=100) was used to temper optimistic estimation of the 
apparent error according to the 0.632 weighting rule.
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Figure S22J. Prediction error curves are plotted for Cox regression models of progression-free survival 
using the three histology classes (red), the three IDH/Codel classes (green), or the three cluster-of-cluster 
classes (blue) as predictors with (right) and without (left) adjustment for age at diagnosis. Error for a model 
with no predictors is given as reference (black). The number of samples at risk at the start of each year are 
given in the horizontal axis labels. Bootstrap resampling (B=100) was used to temper optimistic estimation of 
the apparent error according to the 0.632 weighting rule.
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Figure S23.  Metrics for cluster of clusters model selection. From top-left: consensus 
cumulative distribution function (CDF), consensus matrix for k=3, cophenetic correlation coefficient, 
relative change in area under the CDF curve, sample tracking plot, average silhouette width.
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Figure S24. Batch effects. A. Hierarchical clustering for miRNA expression from miRNA-seq 
data. B. PCA: First two principal components for miRNA expression from miRNA-seq data, with 
samples connected by centroids according to batch ID. C. PCA: First two principal components 
for miRNA expression from miRNA-seq data, with samples connected by centroids according to 
TSS.

A

B C
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Figure S24. D. Hierarchical clustering plot for DNA methylation data. E. PCA for DNA 
methylation, with samples connected by centroids according to batch ID.Fig. F. PCA for DNA 
methylation, with samples connected by centroids according to TSS.
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Figure S24. G. Hierarchical clustering for mRNA expression from RNA-seq data. H. PCA: First 
two principal components for RNA-seq, with samples connected by centroids according to batch 
ID. I. PCA: First two principal components for RNA-seq, with samples connected by centroids 
according to TSS.

Back to Table of Contents



J

K L

Figure S24. J. Hierarchical clustering of RPPA data. K. PCA: First two principal components for 
RPPA, with samples connected by centroids according to batch ID. L. PCA: First two principal 
components for RPPA, with samples connected by centroids according to TSS.
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Supplemental Table Legends 
(see online links to Excel spreadsheets for Tables S1, S3, S5-9) 

 
Table S1. Patient summary table. Sheet A contains patient clustering assignments for 
messenger RNA, DNA methylation, micro RNA, DNA copy number, reverse-phase protein 
array, Oncosign and cluster-of-clusters. Sheet B contains genetic information including 
IDH/1p19q molecular subtype, and mutation status for the TERT promoter and genes selected 
by MutSig analysis. Sheet C summarizes the availability of genomic platforms by patient. Sheet 
D contains clinical and demographic data. Sheet E provides a key describing the clinical and 
demographic fields used in Sheet D (see online link to spreadsheet). 
  
Table S2. Clinical data, including clinical characteristics of the sample set (S2A), overall survival 
models (S2B), progression free survival models (S2C), hazard ratios for LGG and GBM (S2D), 
and adjusted Rand index scores for comparison of IDH/codel status, histology, and histology 
with grade to molecular platform clusters (S2E).  
 
Table S3. Results of GISTIC by molecular subtype. Amplifications and deletions are shown for 
all tumors and for molecular subclasses based on IDH and 1p/19q status (see online link to 
spreadsheet). 
 
Table S4A: Significantly mutated genes with q<0.1 in all LGG identified with the MutSig2CV 
algorithm (Lawrence et al, 2014).   
Table S4B: Significantly mutated genes with q<0.1 in IDHwt LGG identified with the MutSig2CV 
algorithm (Lawrence et al, 2014).   
Table S4C: Significantly mutated genes with q<0.1 in IDHmut-codel LGG identified with the 
MutSig2CV algorithm (Lawrence et al, 2014).   
Table S4D: Significantly mutated genes with q<0.1 in IDHmut-non-codel LGG identified with the 
MutSig2CV algorithm (Lawrence et al, 2014).   
 
Table S5. Results from BamBam and BreakDancer analysis pipelines to identify tumor-specific 
DNA rearrangements and evidence for complex amplicons associated with highly amplified 
tumor DNA segments, including features of potential double minute 
chromosomes/homogeneously staining regions (see online link to spreadsheet)..  
 
Table S6. Overview of transcript fusions (see online link to spreadsheet). 
 
Table S7. Annotation of RNA clusters. Lists of differentially expressed genes for each subtype 
were determined using 2-class SAM (11309499) in 1 versus rest comparisons. Functional 
Annotation Clustering was determined using DAVID Bioinformatics Resources 6.7 (19033363 
and 19131956) where the inputs for each RNA-seq expression subtype were the 2000 most 
highly differentially expressed genes as determined by the SAM outputs (see online link to 
spreadsheet). 
 
Table S8. miRs that are differentially abundant between molecular subtypes. These results 
expand on Figure S10. The spreadsheet gives detailed results for miRs (i.e. 5p and 3p mature 
strands) that are differentially abundant between pairs of molecular subtypes (worksheets 1 to 
6), or between samples in one subtype and samples in the other two subtypes (worksheets 7 to 
12). The Contents worksheet lists the six comparisons. Each comparison has two worksheets: 
miRs that are more abundant (UP), and less abundant (DOWN), in one of the two sample 
groups. 1,2) IDHmut-codel vs IDHmut-non-codel; 3,4) IDHmut-codel vs. IDHwt; 5,6) IDHwt vs. 



IDHmut-non-codel; 7,8) IDHmut-codel vs. other tumor samples; 9,10) IDHmut-non-codel vs. 
other tumor samples; 11,12) IDHwt vs. other tumor samples.  The README worksheet 
describes the method used, and the columns in each worksheet. To allow a user to choose 
either group as the reference, each result worksheet has ‘fold_change’ and ‘-1/fold_change’ 
columns (see online link to spreadsheet). 
 
Table S9. miR-protein anticorrelations and differentially abundant miRs. a) Five tabs give 
all significant miR-antibody anticorrelations (FDR<0.05), then anticorrelations filtered by 
functional validation publications using miRTarBase v4.5, then anticorrelations filtered by 
TargetScan v6.2 conserved and nonconserved target predictions. b) For miRs that are 
differentially abundant for each molecular subtype vs. all other tumour samples, three additional 
tabs report miR-antibody anticorrelations that are supported by miRTarBase publications with 
strong evidence types. c) For the 22 antibodies from (b), one tab reports BH-corrected P-values 
from Wilcoxon and KS tests for an antibody being differentially abundant in each molecular 
subtype (see online link to spreadsheet).  
 



TABLE S2 



 

 

Table S2A.i: Clinical characteristics of the sample set. Clinical characteristics are presented in total and by IDH mutant status and 1p/19q 
co-deletion status within the IDH mutant group. The number of samples with known information is given when complete data are not available. 
Count, and percentage within group, is given for categorical variables and distributions are compared by Fisher’s exact test. Mean, SD, and 

range are given for age at diagnosis and ANOVA was used to compare groups. Significance is noted as ǂ 0.10<p<0.05, # p<0.05, ## p<0.01.  
 
 
 

  
Total 
(n=278£) 

IDHmut 
codel 
(N=84) 

IDHmut 
non-codel 
(N=139) 

 
IDHwt 
(N=55) 

Histological Type ## and Grade ## Oligodendroglioma II 65 (23%) 38 (45%) 21 (15%) 6 (11%) 
 Oligodendroglioma III 44 (16%) 31 (37%) 6 (4%) 7 (13%) 
 Oligoastrocytoma II 41 (15%) 9 (11%) 30 (22%) 2 (4%) 
 Oligoastrocytoma III 33 (12%) 4 (5%) 20 (14%) 9 (16%) 
 Astrocytoma II 30 (11%) 1 (1%) 24 (17%) 5 (9%) 
 Astrocytoma III 65 (23%) 1 (1%) 38 (27%) 26 (47%) 
Age (Yrs) at Diagnosis ## Mean (SD) 42.6 (13.5) 45.4 (13.2)  38.1 (10.9) 49.9 (15.3) 
 Min, Max 14, 75 17, 75 14, 70 21, 74 
Gender Male 155 (56%) 45 (54%) 84 (60%) 26 (47%) 
Race (self-report, n=274) White 261 (95%) 79 (98%) 131 (95%) 51 (93%) 
Ethnicity (self-report, n=261)  Hispanic/Latino 14 (5%) 5 (6%) 6 (5%) 3 (6%) 
Treating Country United States* 265 (95%) 81 (96%) 131 (94%) 53 (96%) 
Year of Diagnosis   Before 2005 38 (14%) 10 (12%) 18 (13%) 10 (18%) 
 2005-2009 88 (32%) 30 (36%) 44 (32%) 14 (25%) 
 2010-2013 152 (55%) 44 (52%) 77 (55%) 31 (56%) 
Family History of Cancer  No History 108 (56%) 30 (52%) 64 (65%) 13 (38%) 
(n=190**)# Primary Brain 11 (6%) 2 (3%) 7 (7%) 2 (6%) 
 Other Cancers 72 (38%) 26 (45%) 27 (28%) 19 (56%) 
Extent of resection (n=268) Open Biopsy 6 (2%) 1 (1%) 4 (3%) 1 (2%) 
 Subtotal Resection 98 (37%) 31 (38%)  45 (34%) 22 (40%) 
 Gross Total Resection 164 (61%) 49 (60%) 83 (63%) 32 (58%) 
Tumor Location## Frontal Lobe 172 (62%) 68 (81%) 84 (60%) 20 (36%) 
 Parietal Lobe 23 (8%) 5 (6%) 13 (9%) 5 (9%) 
 Temporal Lobe 74 (27%) 9 (11%) 40 (29%) 25 (45%) 
 Other+ 9 (3%) 2 (2%) 2 (1%) 5 (9%) 
Laterality (n=276)  Left 133 (48%) 37 (44%) 69 (50%) 27 (49%) 
 Midline 5 (2%) 2 (2%) 2 (1%) 1 (2%) 
 Right 138 (50%) 45 (54%) 66 (48%) 27 (49%) 
White vs. Grey Matter (n=144)  White Matter 74 (51%) 26 (54%) 37 (51%) 11 (46%) 
First Presenting Symptom (n=252) Headache 64 (25%) 15 (21%) 39 (30%) 10 (20%) 
 Mental Status 22 (9%) 7 (10%) 10 (8%) 5 (10%) 
 Motor/Movement 18 (7%) 6 (8%) 7 (5%) 5 (10%) 
 Seizure 135 (54%) 38 (53%) 70 (54%) 27 (53%) 
 Sensory 6 (2%) 3 (4%) 1 (1%) 2 (4%) 
 Visual 7 (3%) 3 (4%) 2 (2%) 2 (4%) 
Primary Radiotherapy (n=166)# Yes 122 (73%) 27 (59%) 66 (76%) 29 (88%) 
Primary Pharmacotherapy (n=153) Yes 95 (62%) 27 (61%) 49 (60%) 19 (70%) 
Preop. Antiseizure Med. (n=202) Yes 148 (73%) 48 (75%) 73 (72%) 27 (75%) 
Preop. Corticosteroids (n=207) Yes 90 (43%) 29 (43%) 46 (44%) 15 (43%) 

 £ Eleven cases with clinical information do not have IDH/Codel status determined 
* Twelve cases were submitted from Russia (3 IDHmut-codel, 7 IDHmut-non-codel, 2 IDHwt), and three case from Italy (1 IDHmut-non-codel, 2 unknown 

IDH/codel)  
** Cases with response to both questions of family history of any cancer (n=192) and of family history of primary brain cancer (n=197) 
+ One case (IDHwt) was in the cerebellum, three cases were in the occipital lobe (2 IDHmut-codel, 1 IDHmut-non-codel) and five cases were listed as 
“supratentorial, not otherwise specified” (1 IDHmut-non-codel, 4 IDHwt) 
 



 

 

 
Table S2A.ii: Clinical characteristics of the sample set. Clinical characteristics are presented in total and by histological type and WHO 
grade. The number of samples with known information is given when complete data are not available. Count, and percentage within group, is 
given for categorical variables and distributions are compared by Fisher’s exact test. Mean, standard deviation, and range are given for age at 

diagnosis and ANOVA was used to compare groups. Significance is noted as ǂ 0.10<p<0.05, # p<0.05, ## p<0.01.  
 

   Astrocytoma Oligoastrocytoma Oligdendroglioma 

  
Total 

(N=289) 
II 

(N=31) 
III 

(N=67) 
II 

(N=43) 
III 

(N=34) 
II 

(N=70) 
III 

(N=44) 
IDH/Codel Group (n=278)##  IDHmut-codel 84 (30%) 1 (3%) 1 (2%) 9 (22%) 4 (12%) 38 (58%) 31 (70%) 
 IDHmut-non-codel 138 (50%) 24 (80%) 38 (58%) 30 (73%) 20 (61%) 21 (32%) 6 (14%) 
 IDHwt 56 (20%) 5 (17%) 26 (40%) 2 (5%) 9 (27%) 6 (9%) 7 (16%) 
Age (Yrs) at Diagnosis##   Mean (SD) 42.7 (13.5) 36.8 (11.6) 45.0 (12.8) 38.4 (12.3) 44.2 (14.6) 41.7 (13.1) 47.9 (14.1)
 Min, Max 14, 75 20, 62 22, 74 14, 69 23, 67 17, 70 23, 75 
Gender Male 160 (55%) 17 (55%) 37 (55%) 22 (51%) 21 (62%) 37 (53%) 26 (59%) 
Race (self-report, n=285) White 272 (95%) 30 (97%) 61 (92%) 40 (95%) 34 (100%) 63 (93%) 44 (100%)
Ethnicity (self-report, n=272) Hispanic/Latino 14 (5%) 3 (11%) 1 (2%) 2 (5%) 1 (3%) 4 (6%) 3 (7%) 
Treating Country# United States* 274 (95%) 26 (84%) 65 (97%) 42 (98%) 34 (100%) 65 (93%) 42 (95%) 
Year of Diagnosis  Before 2005 41 (14%) 2 (6%) 15 (22%) 3 (7%) 3 (9%) 12 (17%) 6 (14%) 
 2005-2009 90 (31%) 8 (26%) 20 (340) 14 (33%) 14 (41%) 19 (27%) 15 (34%) 
 2010-2013 158 (55%) 21 (68%) 32 (48%) 26 (60%) 17 (50%) 39 (56%) 23 (52%) 
Family History of Cancer  No History 110 (55%) 12 (67%) 18 (46%) 22 (59%) 16 (73%) 27 (57%) 15 (45%) 
(n=196**) Primary Brain 11 (6%) 1 (6%) 4 (10%) 3 (8%) 0 (0%) 1 (2%) 2 (6%) 
 Other Cancers 75 (39%) 5 (28%) 17 (44%) 12 (32%) 6 (27%) 19 (40%) 16 (48%) 

Extent of resection (n=255) ǂ Open Biopsy 6 (2%) 0 (0%) 1 (2%) 3 (7%) 1 (3%) 1 (1%) 0 (0%) 

 Subtotal Resection 104 (37%) 7 (23%) 24 (37%) 12 (29%) 17 (57%) 28 (41%) 16 (36%) 
 Gross Total 

Resection 
169 (61%) 23 (77%) 40 (62%) 27 (64%) 12 (40%) 39 (57%) 28 (64%) 

Tumor Locationǂ  Frontal Lobe 178 (62%) 16 (52%) 35 (52%) 27 (63%) 19 (56%) 47 (67%) 34 (77%) 

(between histological typesǂ) Parietal Lobe 24 (8%) 2 (6%) 11 (16%) 3 (7%) 1 (3%) 6 (9%) 1 (2%) 

 Temporal Lobe 78 (27%) 10 (32%) 20 (30%) 12 (28%) 13 (38%) 16 (23%) 7 (16%) 
 Other+ 9 (3%) 3 (10%) 1 (1%) 1 (2%) 1 (3%) 1 (1%) 2 (5%) 
Laterality (n=286) Left 136 (48%) 15 (48%) 35 (53%) 20 (48%) 16 (47%) 33 (48%) 17 (39%) 
 Midline 5 (2%) 1 (3%) 1 (2%) 0 (0%) 1 (3%) 0 (0%) 2 (5%) 
 Right 145 (51%) 15 (48%) 30 (45%) 22 (52%) 17 (50%) 36 (52%) 25 (57%) 
White vs. Grey Matter (n=151) White Matter 79 (52%) 12 (67%) 12 (36%) 11 (46%) 8 (42%) 22 (61%) 14 (67%) 
First Presenting Symptom  Headache 64 (25%) 10 (38%) 13 (21%) 4 (11%) 12 (36%) 13 (21%) 12 (29%) 
(n=261)  Mental Status  22 (8%) 3 (12%) 8 (13%) 2 (5%) 1 (3%) 4 (6%) 4 (10%) 
(seizure vs other##) Motor/Movement 20 (8%) 3 (12%) 5 (8%) 2 (5%) 2 (6%) 3 (5%) 5 (12%) 
 Seizure 142 (54%) 9 (35%) 34 (55%) 28 (76%) 16 (48%) 38 (61%) 17 (41%) 
 Sensory  6 (2%) 0 (0%) 1 (2%) 0 (0%) 1 (3%) 3 (5%) 1 (2%) 
 Visual 7 (3%) 1 (4%) 1 (2%) 1 (3%) 1 (3%) 1 (2%) 2 (5%) 
Primary Radiotherapy (n=174) 
by grade## 

Yes 126 (72%) 8 (57%) 41 (87%) 13 (46%) 25 (96%) 16 (52%) 23 (82%) 

Primary Pharmacotherapy 
(n=161) by grade## 

Yes 101 (63%) 5 (45%) 31 (70%) 6 (25%) 21 (88%) 16 (55%) 22 (76%) 

Preop. Antiseizure Med. (n=210) Yes 154 (73%) 10 (53%) 32 (70%) 28 (82%) 20 (74%) 40 (80%) 24 (71%) 
Preop. Corticosteriods (n=215) Yes 95 (44%) 6 (27%) 24 (51%) 13 (39%) 14 (52%) 24 (45%) 14 (42%) 
* Twelve cases were submitted from Russia and three cases were submitted from Italy  
** Cases with response to both questions of family history of any cancer (n=198) and of family history of primary brain cancer (n=204) 
+ One case (Astrocytoma-II) was in the cerebellum, three cases were in the occipital lobe, and five cases were listed as “supratentorial, not 
otherwise specified” 
 



 

 

 
Table S2B. Overall Survival Models Cox regression models of overall survival considering age at diagnosis, extent of resection, histological 
type, WHO grade, and IDH/Codel group as single predictors and in combination in multiple-predictor models. Area under the survival ROC is 
provided as a measure of predictive ability for each model at 1 year  past diagnosis. Bold denotes hazard ratios significantly different from 1.0 
(no difference). 

       
  Single Predictor  Multi-predictor Models 
  Models Model I 

(AUC=0.80) 
Model II 

(AUC=0.85) 
Model III 

(AUC=0.87) 
Predictor Levels HR (95% CI) AUC HR (95% CI) HR (95% CI) HR (95% CI) 
Age at Diagnosis (per 5 yrs) 1.38 (1.24, 1.53) 0.72 1.42 (1.27, 1.60) 1.36 (1.20, 1.53) 1.37 (1.20, 1.55) 
Extent of Resection  Gross Total 1.0 (ref) 0.57 1.0 (ref) 1.0 (ref) 1.0 (ref) 
 < Gross Total 1.71 (0.97, 3.01)  1.09 (0.60, 1.98) 1.64 (0.90, 3.00) 1.62 (0.87, 3.02) 
Histological Type Astrocytoma 2.26 (1.26, 4.08) 0.60 1.80 (0.96, 3.36) -- 1.79 (0.80, 4.03) 
 Oligoastrocytoma 1.13 (0.56, 2.26)  1.88 (0.91 3.86) -- 1.45 (0.62, 3.35) 
 Oligodendroglioma 1.0 (ref)  1.0 (ref) -- 1.0 (ref) 
WHO Grade II 1.0 (ref) 0.64 1.0 (ref) -- 1.0 (ref) 
 III 3.36 (1.89, 5.98)  3.60 (1.87, 6.90) -- 2.79 (1.40, 5.58) 
IDH/Codel group  IDHmut-codel 1.0 (ref) 0.72 -- 1.0 (ref) 1.0 (ref) 
 IDHmut-non-codel 1.32 (0.64, 2.71)  -- 1.80 (0.87, 3.73) 1.47 (0.60, 3.63) 
 IDHwt 9.22 (4.36, 19.52)  -- 11.22 (4.86, 25.90) 6.67 (2.66, 16.72)

 
 
 
Table S2C. Progression Free Survival Models Cox regression models of progression-free survival considering age at diagnosis, extent of 
resection, histological type, WHO grade, and IDH/Codel group as single predictors and in combination in multiple-predictor models. Area 
under the survival ROC is provided as a measure of predictive ability for each model at 1 year past diagnosis. Bold denotes hazard ratios 
significantly different from 1.0 (no difference). 
 

  Single Predictor  Multi-predictor Models 
  Models Model I 

(AUC=0.65) 
Model II 

(AUC=0.74) 
Model III 

(AUC=0.74) 
Predictor Levels HR (95% CI) AUC HR (95% CI) HR (95% CI) HR (95% CI) 
Age at Diagnosis (per 5 yrs) 1.14 (1.05, 1.24) 0.59 1.15 (1.05, 1.25) 1.10 (1.00, 1.20) 1.10 (1.00, 1.20) 
Extent of Resection  Gross Total 1.0 (ref) 0.53 1.0 (ref) 1.0 (ref) 1.0 (ref) 
(n=240, 85events ) < Gross Total 1.25 (0.80,1.97)  1.14 (0.72, 1.82) 1.24 (0.78, 1.99) 1.24 (0.77, 2.00) 
Histological Type Astrocytoma 1.60 (0.97, 2.64) 0.55 1.77 (1.01, 3.11) -- 1.06 (0.57, 1.98) 
 Oligoastrocytoma 1.09 (0.62, 1.90)  1.70 (0.94, 3.08) -- 1.33 (0.71, 2.48) 
 Oligodendroglioma 1.0 (ref)  1.0 (ref) -- 1.0 (ref) 
WHO Grade II 1.0 (ref) 0.56 1.0 (ref) -- 1.0 (ref) 
 III 1.58 (1.02, 244)  1.69 (1.04, 2.74) -- 1.27 (0.77, 2.09) 
IDH/Codel group  IDHmut-codel 1.0 (ref) 0.70 -- 1.0 (ref) 1.0 (ref) 
(n=240, 86evt) IDHmut-non-codel 1.48 (0.83, 2.63)  -- 2.02 (1.08, 3.76) 1.90 (0.95, 3.80) 
 IDHwt 8.89 (4.66, 16.97)  -- 9.17 (4.56, 18.45) 8.30 (3.89, 17.68)

 
 



 

 

 
Table S2D. Hazard Ratios for LGG and GBM Hazard ratios from Cox Proportional Hazards models with and without adjusting for age at 
diagnosis. Hazard ratios and 95% confidence intervals are given for each pair of groups. Bold denotes hazard ratios significantly different from 
1.0 (no difference).  
 

 Hazard Ratio 
(95% CI) 

Age Adjusted 
Hazard Ratio  
(95% CI) 

IDHmut-non-codel vs IDHmut-codel 1.29 (0.63, 2.66) 1.53 (0.74, 3.14) 
IDHwt vs IDHmut-codel 7.38 (3.57, 15.24) 7.02 (3.39, 14.55) 
GBMmut vs IDHmut-codel 4.91 (2.11, 11.44) 3.96 (1.69, 9.29) 
GBMwt vs IDHmut-codel 13.64 (7.33, 25.38) 9.11 (4.85, 17.13) 
IDHwt vs IDHmut-non-codel 5.71 (3.20, 10.19) 4.60 (2.56, 8.27) 
GBMmut vs IDHmut-non-codel 3.80 (1.84, 7.82) 2.60 (1.25, 5.42) 
GBMwt vs IDHmut-non-codel 10.55 (6.81, 16.34) 5.97 (3.76, 9.49) 
GBMmut vs IDHwt 0.67 (0.32, 1.36) 0.56 (0.27, 1.17) 
GBMwt vs IDHwt 1.85 (1.21, 2.83) 1.30 (0.85, 1.99) 
GBMwt vs GBMmut 2.78 (1.52, 5.09) 2.30 (1.24, 4.27) 

 
 
 
Table S2E. Adjusted Rand Index Scores. Comparisons were made between the IDH/Codel classification and each of the molecular clustering 
solutions as well as with histology, and  histology-grade groups, using the Adjusted Rand Index. Identical classification will have a score of 1.0 
whereas no similarity beyond chance has an expected score of 0. A 95% CI for the ARI estimate is given as derived from 1000 bootstrap 
samples. To allow direct comparison,, only samples with classification in all 10 schemes are retained in this analysis (N=209). Bold denotes 
ARI of 0.5 or greater. 

Adjusted Rand Index (ARI) IDH/Codel Histology Histology/Grade 

vs. IDH/Codel 1 (1, 1) 0.2 (0.12, 0.29) 0.12 (0.08, 0.18) 

vs. RNA Clusters 0.30 (0.23, 0.40) 0.09 (0.05, 0.16) 0.09 (0.06, 0.16) 

vs.DNA  Methylation Clusters 0.52 (0.42, 0.60) 0.11 (0.07, 0.18) 0.09 (0.06, 0.15) 

vs. miRNA Clusters 0.14 (0.08, 0.20) 0.03 (0, 0.08) 0.02 (0, 0.06) 

vs. DNA CN Clusters 0.73 (0.63, 0.83) 0.20 (0.12, 0.30) 0.11 (0.07, 0.18) 

vs. RPPA Clusters 0.09 (0.06, 0.16) 0.04 (0.01, 0.09) 0.03 (0.02, 0.08) 

vs. Cluster of Clusters 0.79 (0.69, 0.88) 0.19 (0.12, 0.29) 0.12 (0.09, 0.19) 

vs. OncoSign Clusters  0.83 (0.75, 0.89) 0.15 (0.09, 0.23) 0.09 (0.06, 0.15) 

vs. Histology 0.20 (0.12, 0.29) 1 (1, 1) 0.60 (0.57, 0.64) 

vs. WHO Grade 0.04 (0.01, 0.10) 0.04 (0.01, 0.10) 0.36 (0.34, 0.41) 
 



TABLE S4 



Gene 

Number of 
patients with 
mutation 

Number of 
mutated sites  p‐value  q‐value

TP53  146 91 1.00E‐16  4.56E‐13
CIC  49 43 1.00E‐16  4.56E‐13
NOTCH1  22 22 1.00E‐16  4.56E‐13
IDH2  12 3 1.00E‐16  4.56E‐13
IDH1  221 2 5.55E‐16  2.03E‐12
ATRX  112 106 2.44E‐15  7.43E‐12
FUBP1  22 22 2.03E‐14  5.30E‐11
NF1  16 20 3.46E‐14  7.90E‐11
PTEN  12 12 5.47E‐13  1.11E‐09
PIK3R1  11 10 7.00E‐13  1.28E‐09
PIK3CA  23 15 3.63E‐11  6.02E‐08
EGFR  16 12 2.23E‐10  3.40E‐07

ARID1A  9 9 3.35E‐08  4.70E‐05
TCF12  6 6 6.17E‐08  8.05E‐05
SMARCA4  12 10 8.50E‐08  1.03E‐04
ZBTB20  10 9 1.01E‐06  1.16E‐03
PLCG1  4 3 1.47E‐06  1.58E‐03
PTPN11  5 4 5.42E‐05  5.50E‐02
ZCCHC12  4 2 6.03E‐05  5.80E‐02

 
 
Table S4A: Significantly mutated genes with q<0.1 in all LGG identified with the 
MutSig2CV algorithm (Lawrence et al, 2014).  Discovery analysis based on 
consensus MAF (see Methods for details). 
 
 

Gene 

Number of 
patients with 
mutation 

Number of 
mutated sites  p‐value  q‐value

PTEN  12 12 3.57E‐14  6.53E‐10
TP53  7 12 1.06E‐12  9.68E‐09
EGFR  16 12 2.34E‐12  1.42E‐08
NF1  10 14 1.72E‐09  7.85E‐06
PLCG1  3 2 3.07E‐07  1.12E‐03
PTPN11  4 3 2.17E‐06  6.59E‐03
PIK3CA  5 5 1.39E‐05  3.62E‐02

 
Table S4B: Significantly mutated genes with q<0.1 in IDHwt LGG identified with the 
MutSig2CV algorithm (Lawrence et al, 2014).  Discovery analysis based on 
consensus MAF (see Methods for details). 



 
 
 

Gene 

Number of 
patients with 
mutation 

Number of 
mutated sites  p‐value  q‐value 

IDH1  77 1 1.00E‐16  6.75E‐13
CIC  46 41 1.00E‐16  6.75E‐13
IDH2  8 2 1.11E‐16  6.75E‐13
NOTCH1  18 19 4.44E‐16  2.03E‐12
FUBP1  22 22 3.77E‐15  1.38E‐11
PIK3CA  16 11 2.17E‐10  6.60E‐07
PIK3R1  6 6 6.42E‐10  1.67E‐06
ZBTB20  7 6 5.96E‐08  1.36E‐04
TCF12  4 5 1.06E‐07  2.15E‐04
ZCCHC12  3 1 7.10E‐06  1.30E‐02
ARID1A  5 5 9.12E‐06  1.51E‐02
TP53  3 3 4.60E‐05  6.90E‐02

 
Table S4C: Significantly mutated genes with q<0.1 in IDHmutcodel LGG identified 
with the MutSig2CV algorithm (Lawrence et al, 2014). Discovery analysis based on 
consensus MAF (see Methods for details). 
 
 
 
 

Gene 

Number of 
patients with 
mutation 

Number of 
mutated sites  p‐value  q‐value

TP53  133 82 1.00E‐16  6.75E‐13
ATRX  107 100 1.00E‐16  6.75E‐13
IDH1  137 2 1.11E‐16  6.75E‐13
SMARCA4  8 6 2.64E‐09  1.21E‐05
IDH2  4 3 6.27E‐08  2.29E‐04
EIF1AX  3 2 3.25E‐05  9.90E‐02

 
Table S4D: Significantly mutated genes with q<0.1 in IDHmutnoncodel LGG 
identified with the MutSig2CV algorithm (Lawrence et al, 2014). Discovery analysis 
based on consensus MAF (see Methods for details). 
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